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Abstract. This paper is concerned with two-dimensional scattering of a normally incident surface wave train on
an obstacle in the form of a thick vertical barrier of rectangular cross section in water of uniform finite depth.
Four different geometrical configurations of the barrier are considered. The barrier may be surface-piercing and
partially immersed, or bottom-standing and submerged, or in the form of a submerged rectangular block not
extending down to the bottom, or in the form of a thick vertical wall with a submerged gap. Appropriate multi-
term Galerkin approximations involving ultraspherical Gegenbauer polynomials are used for solving the integral
equations arising in the mathematical analysis. Very accurate numerical estimates for the reflection coefficient
for each configuration of the barrier are then obtained. The reflection coefficient is depicted graphically against
the wave number for each configuration. It is observed that the reflection coefficient depends significantly on the
thickness for a wide range of values of the wave number, and as such, thickness plays a significant role in the
modelling of efficient breakwaters.
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1. Introduction

Breakwaters are constructed to protect a sheltered area by reflecting back the incident waves
into the rough sea. The problems of water wave scattering by breakwaters modelled as thin
vertical barriers of various configurations have been studied extensively in the literature under
the assumption of linear theory during the last fifty years. The four basic configurations such
as a surface-piercing partially immersed barrier, a submerged bottom-standing barrier, a sub-
merged plate of finite vertical height and a wall with submerged gap or gaps have been used
as basic models of breakwaters in the literature because of their simplicity in the engineering
design and most importantly due to the ability to solve the associated water wave scattering
problems expicitly for normally incident surface water waves in infinitely deep water. For
these problems the velocity potential describing the resulting fluid motion can be obtained
in closed form and the physical quantities of interest, such as the reflection and transmission
coefficients, can also be obtained in terms of known functions or definite integrals.(see
[1-8]). A variety of mathematical techniques have been used to obtain the explicit solutions
to these problems. The reason for the existence of explicit solutions is the fact that each of
these problems is equivalent to solving the two-dimensional Laplace equation in a half plane
with the condition of zero normal derivative of the function being sought for and the mixed
condition on the free surface. By the use of complex variable theory, each problem can be
reduced to finding a complex function satisfying certain conditions and having certain sin-
gularities, and this is somewhat straightforward in principle to obtain (see [9]). For obliquely
incident waves, the complex-variable theory is not applicable and as such the explicit solutions
to these problems are perhaps no longer possible to obtain. The same conclusion also applies
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362 Mridula Kanoria et al.

if the water is of uniform finite depth, while the waves are incident normally or obliquely

on a barrier. In these cases, the associated water-wave scattering problems must be tackled
mathematically by some approximate methods in order to obtain numerical estimates for the
reflection and transmission coefficients.

For obliquely incident waves on a surface-piercing thin vertical barrier partially immersed
in deep water, Evans and Morris [10] obtainined good complementary bounds for the re-
flection coefficient by using single-term Galerkin approximations for solving two integral
eqguations, one for the horizontal velocity across the gap below the barrier and the other for the
difference of velocity potential across the barrier. The single-term approximations are chosen
in terms of the explicit results of Ursell [1]. The bounds involve some definite integrals, and
when computed numerically, coincide up to one or two decimal places, and as such their aver-
ages produce fairly good numerical estimates for the reflection coefficient. Again, for oblique
incidence on a thin vertical plate or a wall with a gap submerged in deep water Mandal and Das
[11] and Das [12Ft al. used this technique successfully to obtain fairly good estimates for the
reflection coefficient in each case. In fact, any water-wave scattering problem involving a thin
vertical barrier with gaps above or below or in between, in deep or uniform finite depth water,
can be tackled by this technique in principle, wherein the single-term approximations involve
the corresponding exact solutions for normal incidence and deep water. However, there is no
guarantee that the technique would result in good complementary bounds for any scattering
problem involving a vertical barrier. For example, when surface waves are obliquely incident
on a thin vertical barrier submerged in deep water, Evans and Morris [10] reported that the
bounds are not very close and as such the single-term approximation technique is not suitable
for this case.

In water of uniform finite depth, Losada [18] al. investigated two oblique wave scattering
problems involving a thin vertical barrier with gaps by a method in which each problem is re-
duced to finding the solution of a dual series relation. Using the principle of least squares, they
reduced the dual-series relation to an infinite linear system which was then solved numerically
after truncation, and this solution was utilized to obtain the reflection and transmission coeffi-
cients numerically. The case of normal incidence could be tackled by the same method. Later
Mandal and Dolai [14] utilized the single-term Galerkin approximation technique involving
the corresponding known exact solutions for normally incident waves in deep water to obtain
very accurate bounds for the reflection coefficients for four water-wave scattering problems
involving thin vertical barriers with gaps in finite depth water.

Several scattering problems involving two symmetrical thin vertical barriers with gaps
have also been tackled by the single-term Galerkin approximation technique. By virtue the
geometrical symmetry, each problem was replaced by two separate problems, each involving
a single barrier, which was then tackled by this technique. For the case of infinitely deep
water, Evans and Morris [15] earlier used this technique to handle the problem of water-wave
scattering by two thin vertical parallel barriers immersed to a given depth below the free
surface. Recently, Kanoria and Mandal [16], Banerjea Ei7&l. investigated a number of
oblique wave-scattering problems involving two symmetrical thin vertical barriers with gaps
in uniform finite depth water by using this technique. It may be noted that the numerical
estimates for the reflection coefficients in each of these problems are accurate mostly up to
one or two decimal places depending on the wave number of the incident wave field and the
geometry of the barriers.

As mentioned earlier, the single-term Galerkin approximation technique does not always
lead to even moderately accurate bounds for the reflection coefficients in a number of wave-
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scattering problems involving thin vertical barriers either in deep water or in water of uniform
finite depth. Thus, the technique needs to be modified. An obvious modification is perhaps
the use of multi-term Galerkin approximations. For single-term approximations, the exact
solutions for deep water and normal incidence of the waves involving the barrier have been
utilized. However, for multi-term approximations, we need to find appropriate basis functions
in terms of which multi-term expansions can be made. Although, in principle, any set of
independent functions would serve the purpose, in practice, the basis functions are to be
chosen suitably such that very accurate numerical estimates for the reflection and transmission
coefficients are obtained with minimum effort. For a number of scattering problems involving
thin vertical barriers, Porter and Evans [9] showed how appropriate basis functions in terms of
Chebyshev polynomials can be chosen to produce extremely accurate numerical results with
minimum effort. Banerjea [17&t al. and Das [18kt al. utilized the multi-term Galerkin ap-
proximation technique successfully for a number of water-wave scattering problems involving
two symmetric thin vertical barriers with gaps in finite-depth water.

For a thin wall with a submergetharrow gap, the method of matched asymptotic expansion
has been utilized with great success to study the related water wave scattering problems. Tuck
[19] first used this method to obtain an approximate expression for the transmission coefficient
when a surface wave train is normally incident on a thin vertical wall withaerow gap
submerged in deep water. Although the explicit solution to this problem, when the gap is not
necessarily narrow, was obtained by Porter [7] shortly afterwards, Tuck [20] later mentioned
the usefulness of the approximate result for the transmission coefficient for a narrow gap over
Porter’s [7] result which is limited to sharp edged gaps in plane walls of zero thickness. Pack-
ham and Williams [21] generalised Tuck’s [19] narrow-gap problem in deep water to water of
uniform finite depth and used an integral-equation formulation based on application of Green'’s
integral theorem in the fluid region to tackle the problem. They solved the integral equation
approximately by exploiting the concept of narrowness of the gap and used this solution to
obtain an expression of the transmission coefficeint, which reduces to Tuck’s [19] result as the
depth of water is made to tend to infinity. Also, Mandal [22] reinvestigated Tuck’s [19] narrow-
gap problem by using an integral-equation formulation based on Havelock’s [23] expansion
of water-wave potential. These authors solved the integral equation approximately by using
the method of Packham and Williams [21] and then Tuck’s [19] approximate expression for
the transmission coefficient was derived.

Guiney [24] et al. extended the work of Tuck [19] to include the effect of thickness in
a vertical wall of rectangular cross section while Owen and Bhatt [25] considered the case
of a narrow gap in a thick barrier of arbitrary cross section. Tuck [20] also discussed the
role of matched-asymptotic-expansion technique in some detail in tackling problems of flow
through small holes in an expository article. Liu and Wu ([26], [27]) used Tuck’s [19] method
of matched asymptotic expansions to investigate obligue wave scattering by a thick wall
with a submerged narrow gap in finite-depth water and also in deep water. However, their
investigation was actually limited to the long-wave case only, since they approximated the
modified Helmholtz equation in two dimensions by the Laplace equation for obtaining the
inner solution. It may be noted that the method of matched asymptotic expansions is not
suitable for narrow gaps.

When the breakwaters are modelled as thick vertical barriers with rectangular cross sec-
tions in water of uniform finite depth, the corresponding water-wave scattering problems for
normal incidence of a surface wave train were investigated by Mei and Black [28] for surface-
piercing and bottom-standing barriers. They used a variational formulation to obtain numerical
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estimates for the reflection coefficient with an accuracy within one percent and presented
graphically the numerical results.

In this paper we consider two-dimensional scattering of a train of surface water waves nor-
mally incident on a thick vertical barrier of rectangular cross section in water of uniform finite
depth. The barrier has four different geometrical configurations designated by type I, type
Il, type Il and type IV depending on whether it is surface piercing and partially immersed,
bottom standing and submerged, in the form of a submerged rectangular block not extending
down to the bottom, or in the form of a thick vertical wall with a submerged gap. In the
latter configuration, the gap is not necessarily narrow. By use of the geometrical symmetry
of a barrier about its center line, the scattering problem for each type of barriers is split
into two separate problems involving the symmetric and anti-symmetric potential functions
describing the resulting motion in the fluid. Appropriate eigenfunction expansions for each
of these potential functions in different regions followed by a matching process produce an
integral equation for the corresponding unknown horizontal component of velocity across the
vertical line through the corner points in the gap or gaps above or below the barrier. Also, for
each case of the symmetric and antisymmetric potential functions, a real quantity related to the
reflection coefficient is defined. This is expressed in terms of an integral expression involving
the aforesaid unknown velocity. Thus, once the integral equations are solved, the reflection
coefficient can be obtained. The two integral equations for each configuration of the barrier are
solved here by suitable multi-term Galerkin approximations involving ultraspherical Gegen-
bauer polynomials. This idea of multi-term approximation involving Gegenbauer polynomials
is due to Porterdf. Evans and Fernyhough [29]) in connection with the mathematical study of
a water wave problem concerning edge waves travelling along a periodic coast line consisting
of a straight and vertical cliff face from which protrudes an infinite number of rectangular
barriers.

We obtain the numerical results for the reflection coefficient for each thick-barrier con-
figuration with a six-figure accuracy by choosing only four terms in the multi-term Galerkin
approximations, and these are also depicted graphically against the wave number. For type |
barriers, the resutls are compared with Mei and Black’s [28] results and good agreement is
achieved. For type Il barriers, zeros of the reflection coefficient occur for a number of values
of the wave number. This is consistent with the observations of Mei and Black [28]. For
large horizontal length of type 1l barriers, the number of zeros of the reflection coefficient
as a function of the wave number increases, which is also consistent with the observation of
Newman [30] for long bottom obstacles. The results for type Il barriers reduce to those for
type |l barriers if we take the lower end very near to the bottom, while the results for type
IV barriers reduce to these for type | barriers if we make the height of the lower part very
small. These results provide some checks on the correctness of the numerical method utilized
here. Also, the results for type IV barriers are compared with narrow gap results of Packman
and Williams [21] for thin barriers. Agreement in the qualitative behaviour of the reflection
coefficient as a function of the wave number is seen to have been achieved.

2. Formulation of the problem

We consider a thick barrier of width Ziresent in water of uniform finite depth and choose
the y-axis vertically downwards along the line of symmetry of the thick barrier so that the
wetted part of the barrier occupies the regieh < x < b,y € L =L;(j =1,23,4).
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HereL; = (0,a), Ly = (¢, h), Lz = (a,¢) andLs = (0,a) + (¢c,h) (0O < a < ¢ < h)
corresponding to type I, type Il and type Il and type IV barrier configurations respectively.
These configurations are described in Figure 1.
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Figure 1. Definition sketch of the thick barriers.

Under the assumption of the linearised theory of water waves, a train of surface waves repres-
ented by the velocity potential Rg"(x, y) e7°’} is normally incident on a thick barrier of a
particular configuration from a large distance on its righitS(x, y) being given by

: 2 coshkg(h — y) e ikotx=b)
nc(x. y) = , 2.1
¢ x.y) coshkoh (1)

wherekg is the unigue real positive root of the transcendental equation

ktanhkh = K (2.2)

with K = o2/g, o being the circular frequency of the incoming wave trajnpeing the
acceleration due to gravity. Let the resulting motion in the fluid be described by the velocity
potential Re (x, y) €'}, theng (x, y) satisfies

V2¢ =0 in the fluid region (2.3)
x| > b for type I, IV barrier,

K¢ +¢,=0 ony=0, _ (2.4)
x| < oo fortype I, lll barrier,

¢, =0 onx==b, ye L; fortype; barrier(j =123 4), (2.5)

r3V¢ is bounded as — 0, (2.6)
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wherer is the distance from a submerged edge of the thick barrier,
¢, =0 ony=I, x| <b fortype; barrier(j =1,2,3,4), 2.7

x| < oo  fortype |, lll barrier,

,=0 ony =h, 2.8
b Y { x| > b for type Il, IV barrier (28)

and finally,

¢"(x, y) + R$"(—x,y) asx — oo,

¢(x,y) ~ { (2.9)

T¢"(x,y) asx — —oo,
whereR and T are the reflection and transmission coefficients (complex) and are to be de-

termined for each barrier configuration. In Equation (2i¥)= a; I = ¢; I3 = a,c and
l4 = a, ¢ corresponding to type |, Il, 1l and IV barrier configurations depicted in Figure 1.

3. The method of solution

Due to geometrical symmetry of the thick barrier abhout 0, it is convenient to splip (x, y)
into a symmetric and antisymmetric pa¢t¥x, y) and¢?(x, y), respectively, so that

¢(x,y) = ¢*(x,y) + ¢ (x, y), (3.1)
where
¢S(_X’ )’) :¢S(x’ )’)’ ¢d(_x’ )’) :_¢d(x’ )’) (32)

Thus, we may restrict our analysis to the regiok 0 only. Now¢*“(x, y) satisfy Equations
(2.3) to (2.8) together with

$,(0,y) =0, $“0,y) =0, O0<y<h. (3.3)
Let the behaviour od*“(x, y) for largex be represented by

coshkg(h — y)

¢ y) ~ coshkoh

{efiko(xfb) + RS eikO(X*b)} asx — oo (3.4)

where R* and R* are unknown constants. By using Equations (2.9) we find that, these con-
stants are related t® and7 by the equations

R, T = 1(R* £ R9) e 2kob, (3.5)
Now the eigenfunction expressions@®¥“(x, y) satisfying Equations (2.3) to (2.5), (2.7),

(2.8), (3.3) and (2.4) (fotx > b)) in the different regions for each barrier configuration are
given below.
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Region | (x > b, 0 < y < h):

coshko(h — : _
$(x,y) = Cogﬁk - y) {e-kot=b) 4 gea ghotx=b)
0
+ ) Ay cosk, (h — y) e D), (3.6)

n=1

wherek, (n = 1, 2, ...) are the real positive roots of the equation

ktankh + K = 0. (3.7)
Regionll O<x <b,y €e L=L; =0,h)—L;, j=1,2,3,4):

Fory € Ly = (a, h), ¢ (x, y) and¢?(x, y) are given by

s ~ ( B,cosh;™ _
o1y = 0 + Z . zm COSM. (3.8)
¢ (x,y) B§x ~\ B sinh 7= h—a

A nonzero constant term in the expansiornpéfx, y) is omitted here as its presence does
not affect the calculation of the reflection coefficient by the present method. This is explained
in detail in Appendix IV. However, there is no reason to believe that this constant is zero in
general. If its value is required (for example, to determine the vertical force on a barrier) then
it may be calculated by the method given in Appendix IV.

Fory € L= (0,¢), ¢’(x, y) andg®(x, y) are given by

' (x,y) _ CS COSaoX \ cosug(c — y)
¢“(x,y) ) Cé sinagx coshage

i ( C: cosha,,x

2
n=1

wheretag, +ia, (n = 1, 2, ...) are the roots of the equation

cosa, (c — y), 3.9
C,‘jsinhanx> Y (39)

atanhac = K. (3.10)

Fory € Ly = (0,a) + (c, h), ¢>“(x, y) will have two types of expansions depending on
whether 0< y < aorc < y < h. For0 < y < a, the expansions ap*“(x, y) are
similar to (3.9) withC:“ replaced byD:“, o, replaced bys, (n =0, 1, 2, ...) andc replaced
by a, wherexgy, £iB, (n =1, 2, ...) are the roots of the equation

BtanhBa = K. (3.11)

Forc < y < h, the expansions af*-“(x, y) are similar to (3.8) withB; replaced byE’ (n =
1,2,...), Bl replaced byES (n = 0,1, 2,...) anda replaced by.

Fory € L4 = (a, c), the expansions af*“(x, y) are the same as given by Equation (3.8)
with B; replaced byH) (n = 1,2,...), BY replacedH? (n = 0,1,2,...) and X replaced
by c.
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Let us now define

¢r(b+0,y) = f(y), O0<y<h. (3.12)
Then

() =0 forye L=L;, (3.13)
and

¢(b—0,y) = f*9(y) foryeL=(0,h)—L. (3.14)

Also, due to the edge condition described by (2.6), we must have the requirement that
£y =0y =173 asy -1 (3.15)
wherel = [; for barrier of typej (j =1, 2, 3, 4).

Use of the expansion (3.6) f@r-“(x, y) in Equation (3.12) followed by Havelock’s [19]
inversion formula, produces, after noting the condition (3.13),

4; coshkoh
1 goo = 222008 ; 4 /fs"‘(y) coshkg(h — y) dy (3.16)
0 L
with
i , 4
80 = 2koh + sinh Zoh, Ay = = /fs*“(y) cosk,(h — y)dy
n JL

with

8, = 2k,h +sin2k,h (n=1,2,...). (3.17)

Substituting the expansions (3.8) #6¥“(x, y) in Equation (3.14) and using Fourier cosine
inversion, we find thaif* (y) for type | barrier satisfies the condition

h
/ ff(ydy =0, (3.18)
and the constant8g, B;“ (n =1, 2, ...) are obtained as
1 h
B = —— “(y)dy, 3.19
0=, /a fey)dy (3.19)
2 1 1 h nr(y — a)
Bro= / £y cos T2 "L gy, (3.20)
nm \ sinh;Z% cosh;z2 | J, h—a

The constant€’“ (n =0, 1, 2, ...) appearing in Equations (3.9) are related‘td'(y) for
type Il barrier by the following expressions obtained by using Havelock’s inversion formula
in Equation (3.14) forO< y < c:

4 coshuge < 1 1

CS,(J _
0o = o ;
Y0 Sinagh  CcOoSapb

) /0 f5%(y) coshag(c — y) dy (3.21)
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with

Yo = 20pC + sinh Zxgc,

CH4 = 4 ! ! /C 54 (y) cosa, ( )d
"y, \sinha,b’ cosha,b ) Jo Y e = IR

with
Vo = 20,¢c +SiN20,¢c n=1,2,...) (3.22)

For type Il barrier, we derive expressions ¢ from C:-“ by replacingx, by g, andy,
bye,(n=0,1,2,...)

€0 = 2Boa + sinh 28pa, €, =2B,a+sinh2B,a m=12,..) (3.23)
and E; is derived fromB; (n = 1,2,...); we derive E¢ from B! (n = 0,1,2,...) by

replacinga by ¢ and in this casg*(y) (¢ < y < h) must satisfy

h
/ ff(ydy=0. (3.24)

For type IV barrier,H} is derived fromB; (n = 1, 2, ...) and we deriveH? from B¢ (n =
0,1,2,...) by replacing: by ¢ and in this casg¢*(y) (a < y < ¢) must satisfy

/ f(y)ydy =0. (3.25)

It may be noted that the condition (3.18) or (3.24) or (3.25) fé¢y) corresponding to
type | or type Il or type IV barrier, may be regarded as the compatibility condition for the
existence of solution in the regidm| < b,y € Lj or (¢, h) or L4. This condition plays an
important role in the choice of the basis functions joi(y) (y € Lj or (c, k) or L,) (see
Appendix II).

Now matching ofp*“(x, y) across the line = b through the right corner points of the
gap, or gaps, gives rise to the relations

™ (b+0,y) =¢"(b—0,y), ye L, (3.26)
which ultimately produce the integral equations

coshkg(h — y)

F )M (v, u) du = , L, 3.27
/L () (v 1) Gt coshkgh ( )
where
Fray) = 4 cost koh Fraty) c T (3.28)
y - 80(1+ RS,d) y ’ y } .

and M*“(y,u) (y,u € L) are real and symmetric in andu, and their expressions for
L=L;(j=123, 4) aregiven in Appendix I.
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If we now define the constants’™* by

1- R

CH — ’ 3.29
ll.+<Rsa ( )
then, by using the relations (3.16) and (3.28), we find that
: coshkg(h — y) :
Fo4(y)—————=dy = C*“. 3.30
fL ) —cosmiar— & (3.30)

It is important to note that*:“(y) andC*-* are all real quantities. Thus, if the integral Equa-
tions (3.27) are solved, then these solutions can be utilized to obtairfrom the relation
(3.30), and these in turn produce the actual reflection and transmission coeffigiearsd
|T|, respectively, from the relations

|1+ C*C |Cs — C°
Rl=—"F— Tl=—FZ—
with
A = {1+ (CH*+ (CH* 4 (C°CHHY?, (3.31)

which are obtained from Equations (3.29) and (3.5).
To solve the integral Equations (3.27), we adopt a Galerkin approach. The fungtibéas
are approximated as

F*(y) ~ FS“(y), yelL, (3.32)
where#*“(y) have multi-term Galerkin expansions in terms of suitable basis functions. We

note thatLq, Z_z, L, are single intervals whilé; consists of two disjoint intervals. For the
single intervalL ; (j = 1, 2, 4), #*“(y) are expressed as

N
FUW =Y a0, veLi (=124, (3:33)
n=0

and, for the double interval; = (0, a) + (¢, h), F**(y) are expressed as

N
> aypy(y). O<y<a,
) n=0
Fra(y) = (3.34)

N
> by (y). c<y<h,
n=0

where the basis functiong’“(y) fory € L, (j = 1,2,4) andp’“(y) for0 < y < a, ¢>*(y)
forc < y < h are given in Appendix Il, and;¢, b):“ are unknown constants to be found
separately for each type of barrier as described below.
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WhenL = L;(j = 1,2 4), we substitute the expansion (3.33) in Equations (3.27),
multiply by appropriatef$“(y) and integrate ovek to obtain the linear systems

N
Y aKit=dy, m=012...N, (3.35)
n=0
where
Ko = //M"’“(y,u)ﬁf’“(u)f,;’;“(y) dudy, m,n=0,12...,N, (3.36)
LJL
coshko(h — y)
ds.a: PSS v d ’ =0’l’2’~-~aN~ 337

For eachL; (j = 1,2, 4), the integrals in the relations (3.36) and (3.37) can be evaluated
explicitly, and these are given in Appendix Ill. Thus the constafits(n = 0,1, ... N) are

now obtained by solving the linear Equations (3.35) for each of type I, type Il and type IV
barrier. The relations (3.30) produce

n

N
CH = "aydy”, (3.38)
n=0

so thatC** are now found for each of the type I, type Il and type IV barrier.

WhenL = Lz = (0,a) + (c, h), we substitute the expansions (3.34) in Equations (3.27)
for L = L, multiply first by p“(y) (0 < y < a) and then byg$“(y) (c < y < h) and
integrate over0, a) and(c, h), respectively, to obtain the linear systems

N Gs’a N Hs!a dr(nl):,a
a;’a mn + b’sl,a mn — , m = O, 1, e N, 3.39
Z ( Pps-a ) Z ( s.a ) ( ) ( )

n=0 mn n=0 mn d,(nZ)w
where
Gun = / / My, u) py(u) du ¢ p,a©(y) dy,
0 0
a h
= [ seeoiogwdd sy ay
Oh Ca (340)
i = [ [ werwpewdd g,
c 0
h h
= / / M (y, u)gy (u) du t g (y) dy,
so that
Byt = Hy.
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and
4 coshkg(h — y) .
d(l):,a — / I A Y] d ,
" 0 coshkoh P () Ay
" coshko(h — y)
J@ea / 0 54 (y) dy. 3.41
" . coshkoh G () Ay ( )

The integrals in the relations (3.40) and (3.41) can be evaluated explicitly and these are given
in Appendix lll. Thus for type Il barrierg; ¢ andb;“ (n = 0, 1, ... N) in the relations (3.34)
are obtained by solving the linear systems (3.39) @hti are approximated as

N
CS,a — Z{afl,adr(ll).\,a + bfl,adr(lz).\,a } (342)
n=0

4. Numerical results

Since|R|? + |T|? = 1, we mostly confine our attention to the reflection coeffici@jtonly.
Multi-term Galerkin approximations are used to obtain a numerical estimat& foFor each
barrier configuration we have to compute infinite series of the f&fjyi. These series are
computed numerically by truncation. A six-figure accuracy is achieved by taking 200 terms
in each series. However, the accuracy can be further increased by following a numerical pro-
cedure suggested by Porter and Evans [9] in the computation of series of this type. This is not
pursued here.

We display a representative set of numerical estimateRfoior the four type of barriers
in Table 1, takingv = 0,1, 2, 3,4 and 5 in thg N + 1)-term Galerkin approximations and
some particular values of the different parameters and the wave number. It is observed from
this table that the computed results f@| converge very rapidly withV, and forN > 3
an accuracy of almost six decimal places is achieved. It appears that the present numerical
procedure for the numerical computation| & is quite efficient.

1

1

0.8 0.8 |

06 06 |
@Z : @i bh=.5

0.4 0.4+

0.2 + 0.2 r

0 1 L i L | 0 I L
0 05 1 15 2 25 3 0 0.5 1 1.5
- Kh koa

Figure 2a. Reflection coefficient for type | barrier,  Figure 2b. Reflection coefficient v&ga for type |
a/h =12. barrier,a/h = 0-5.
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Table 1. Reflection coefficienfR|.

Kh N=0 N=1 N=2 N=3 N=4 N=5

Type | Barriera/h =02, b/h =05

02 0783791 0778117 0778024 (0778019 0778019 0778019
1.0 0968121 (067934 (067934 (967934 (967934 (967934
1.8 0993855 (092526 (0992543 (0992543 (992543 (992543

Type Il Barrier ¢/h = 0.5, b/h =05

02 0446081 0441869 (441811 (441808 (441808 (441808
1.0 0007353 0006603 0006675 G006679 (006679 (006679
1.8 0364916 0361848 0361618 (361602 (361602 0361602

Type lll Barrier a/h = 0.2, ¢/h =04, b/h = 0-5

02 0648346 0638165 0637977 0637966 0637965 0637965
1.0 0924199 (025042 (925058 (@925058 (025058 (925058
1.8 0865962 (866637 0866616 0866616 (866616 (866616

Type IV Barriera/h =02, ¢/h =04, b/h =05

02 0981698 (981676 (981676 (981676 (981676 (981676
1.0 0996937 (0996358 (996358 (096358 (996358 (996358
1.8 0998484 (0998319 (998319 (998319 (098319 (998319

For asurface-piercing thick barrieftype | barrier), the computed results f@]| are plotted
in Figure 2(a) against the wave numbi&h for a/h = 0.2 andb/h = 0-.01,0-1, 1.0. It is
observed from this figure that, for a fixed value of the wave nunier|R| increases with
the thickness of the barrier. Als@R| increases asymptotically to unity as the wave number
becomes large, which is plausible, since, for large wave number, the incident wave train is
confined within a thin layer below the free surface and as such most of the incident wave
energy is reflected back by the surface-piercing barrier. Also, when the thickness is equal to
water depth|R| becomes near unity for moderately large values of the wave number. In order
to compare our results with those of Mei and Black [28], in Figure 2(b) we have drRywn
againstkoa for b/h = 0.5, a/h = 0.5. This curve almost coincides with the corresponding
curve given in Figure 6 of Mei and Black [28].

For abottom-standing thick barrieftype Il barrier),|R| is depicted in Figure 3 against
Khforc/h = 0.5 andb/h = 0-.01,1.0, 2.0 and 50. It is observed that, when the barrier is
comparatively thinb/h = 0-01), |R| firstincreases and then decreases asymptotically to zero
with the increase of the wave number. This is the usual behaviour of the reflection coefficient
for an infinitely thin barrier. However, as the thickness increagRpstarts fluctuating and
the fluctuations become rapid as the thickness of the barrier further increases. For very large
wave numberfR| becomes zero asymptotically, which is obvious, since the incident wave train
then does not penetrate enough below the free surface to feel the presence of the submerged
barrier. The oscillatory behaviour @R| is due to interaction between the two ends of the thick
barrier. Also,|R| assumes zero values for a number of frequencies of the incident wave train.
This type of behaviour ofR| is consistent with the study of Mei and Black [28] for bottom-
standing barriers. The curve [@®| for b/ h = 5.0 (large horizontal breadth) may be identified
with the curve given by Newman [30] for a long rectangular obstacle in which case the depth
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is infinite, except at the obstacle. Except for the low-frequency region, the qualitative nature
of the curves is similar. As the frequency parameter tends to zRroéends to unity for deep
water (Newman’s figure), while in the case of water of finite dej®htends to zero (Figure

3 here). This is the so-called low-frequency paradox mentioned by Tuck [20].

0.6 1
- :

0.5 0.8

0.4 f N
{ 0.6 b

03 I

IR

0.4 hh I
0.2

0.2 I
0.1

Figure 3. Reflection coefficient for type Il barrier, Figure 4. Reflection coefficient for type Il barrier,
c¢/h =05. a/h=02,c¢/h =04,

For asubmerged thick rectangular blogkype Il barrier), |R| is plotted againsk/ in
Figure 4 fora/h = 0-2,¢/h = 0-4 andb/h = 0-01,1.0 and 20. Here also the thickness of
the barrier affect$R| significantly. For small thicknes®/k = 0-01), as in the case of a type
Il barrier, |R| first increases and then decreases to zero asymptotically as the wave number
increases. As the thickness increas®s starts oscillating and the occurrence of a number of
zeros of| R| is observed. The number of oscillations increases with the increase of thickness
as in the case of type Il barrier. By looking at Figures 3 and 4, we also observe that there is
some similarity in the qualitative behaviour (@&| against the wave number for barriers of
type Il and type lll. In fact, if the gap between the lower end of a type Il barrier and the
bottom is made very small, then this would behave almost like a bottom-standing barrier (type
1) although there will still be some transmission through the very small gap. In Figure 5 for a
type lll barrier, we depictér|, againstK i takingb/h = 0-01,1.0,a/h = 0-5,¢/h = 0-999,
so that the gap between the barrier and the bottom becomes very small. Also for a type Il
barrier, we depictér|, in the same figure taking/h = 0-01,1.0,¢/h = 0-5. It is observed
that the curve ofR| for type Ill barrier withb/h = 0-01 lies slightly below the curve gR|
for type 1l barrier withb/h = 0-01. The small difference in the two curves is due to some
small transmission of the incident wave energy below the type Il barrier as there is still some
gap, although very narrow, between its lower end and the bottom. Howevey foe= 1.0,
the two curves practically coincide. This is due to considerable increase in the thickness of the
barriers.
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0.6 Type Il barrier, a/h = .5, c/h = .999, b/h = 1 1 " bih-
b 4 1
0.5 0.8 1
0.4 3
/ 0.6
r 03 T
0.4
02 Type Il barrier, ¢/h = .5, \
0.2 |
0.1 2
O | - 1 O e a L 1 1 1 PR
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Kh Kh
Figure 5. Reflection coefficient vs wave number. Figure 6. Reflection coefficient for type IV barrier,

a/h=02,¢/h=04.

Finally, for athick vertical wall with a submerged gajype IV barrier),|R| is depicted
graphically againsK# in Figure 6 fora/h = 0-2,¢/h = 0-4 andb/h = 0-01,0-1, 1.0. It
is observed from this figure thaR| steadily increases as the wave numKerincreases and
asymptotically becomes unity for largéh. Also, for a fixed wave numbefR| increases as
the thickness increases. It is interesting to observe that, when thickness is equal to the water
depth(b/h = 1.0), |R| very quickly becomes near unity for even moderate values of the wave
number. A similar behaviour dfR| is also observed for type | barrier, although in that case
the wave number is moderately large. Again, from the Figures 2(a) and 6 it is observed that
there is some similarity in the qualitative behaviour Bf for the type | and type IV barriers.
In both cases$R| increases asymptotically to unity and there is no oscillatiofRin This is
due to the fact that both barriers are surface piercing. In fact, if we confine the lower part of
the type IV barrier near the bottom by makiagh nearly unity, then it assumes the form of a
type | barrier and thus we expect that the curvegroffor the two types of barrier in that case
should be very near to each other. In Figure 7, for a type IV bar®éiis plotted againsK
fora/h = 02,b/h = 0-1,c¢/h = 0999 and|R| for a type | barrier is plotted for the same
values ofa/h andb/h. The two curves almost coincide. Finally, to compare our results for
a type IV barrier with the results of Packham and Williams [21] for a submengecw gap
in an infinitely thin wall, for a type IV barrier, we pldf’|> = 1 — |R|? in Figure 8 against
KH(H = (a + ¢)/2), takingc/h = 0-86,a/h = 0-74 andb/h = 0-01,0-001, so that the
thickness of the barrier is small and the gap is narrow. The qualitative behaviour of the two
curves depictingT'|? againstK H is observed to be very similar to the curve fa@t|? (the
upper most curve in Figure 1 of [21]) given by Packham and Williams [21] for an infinitely
thin barrier. It may be noted that for deep walt&t> — 0 askK H — 0, while for water of
finite depth|T|> — 1 askK H — 0 and the latter is observed in Figure 8. This is the so called
low-frequency paradox mentioned earlier.
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1

1
Type | barrier, ath=.2 )
" i
08 - Type IV barrier, a/h = .2, ¢/h = .899 O 8 _x\
L \\
0.6 0B} ‘\
T . .
el t b/h=.001
04 041 |
bih=.0T .
AN
0.2 0.2 r .
\\\
0 . . . ! L Ml
15 2 25 3 0 0.5 1 1.5
Kh K(a+c)/2
Figure 7. Reflection coefficient vs wave number, Figure 8. Type IV barrier, transmission coefficient vs
b/h =01. K(a+c)/2.

For all the four types of thick rectangular vertical barriers it is observed that the long-
wave limit of the reflection coefficientR| is zero as is evident from the Figures 2—7. Martin
and Dalrymple [31] and Mclver [32] confirmed, by using the method of matched asymptotic
expansions, that the long-wave limit @®| for any obstacle is zero. This provides a partial
check on the correctness of the numerical method utilized here.

5. Conclusion

The method of multi-term Galerkin approximations in terms of ultraspherical Gegenbauer
polynomials has been utilized here to obtain very accurate numerical estimates for the reflec-
tion coefficient in the water wave scattering problems involving thick rectangular barriers of
four different geometrical configurations in water of uniform finite depth. By choosing only
four terms in the Galerkin approximations, we achieve almost six-figure accuracy in the nu-
merical estimate for the reflection coefficient. The numerical results are illustrated graphically,
and some results are compared with known results available in the literature, for which good
agreement is achieved. The thickness of a barrier affects the reflection coefficient considerably
and thus the thickness plays a significant role in the modelling of breakwaters.
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Appendix I.  Expressions for M>3(y,u)

(i) For y,u € L1 = (a, h), we find thatM*(y, u) is given by

M (y, u)
b i {cosk,,(h — y) cosk, (h — u)
cosif koh | = 8
1 nmwb nm(y —a) nmw(u — a)
coth cos cos . Al.1
+2n71 h—a h—a h—a ( )

The expression fom“(y, u) is obtained by replacing ‘coth’ by ‘tanh’in the relation (Al1.1)
and inserting an extra teriiy4(h — a) inside the square bracket.
(i) Fory,u € L, = (0, ¢), we find thatM* (y, u) is given by

8o [i {cosk,,(h — y)cosk, (h — u)

My u) = —o
(1) coslt koh Sn

n=1
Jrcothoz,,b cosw, (¢ — y) COSw, (¢ — u)
Vn

— cotagb

CoSag(c — y) COSag(c — u) ” (AL2)

Yo

The expression fam“(y, u) is obtained by replacing ‘coth’ by ‘tanh’ and-‘cot’ by ‘tan’ in
the relation (Al1.2).

(iiiy For y,u € Lz = (0,a) + (c, h).

Fory,u € (0,a), M*(y, u) is obtained from the relation (A1.2) by replaciady a and
similarly for M“(y, u). Fory,u € (c, h), M*(y, u) is obtained from the relation (A1.1) by
replacinga by ¢ and similarly forM¢(y, u). Fory € (0,a),u € (c,h) andy € (c,h), u €
(0, a),

80 <= COsk, (h — y) cosk, (h — u)
> :

M (y,u) = My, u) =
(. 1) (1) coslt koh Sn

(A1.3)

n=1

(iv) For y,u € Ly = (a, c), M*(y, u) is obtained from the relation (A1.1) by replacihg
by ¢, and similarly form“(y, u).

Appendix Il.  The basis functions

The basis functions are to be chosen such that they satisfy the appropriate physical require-
ments and the final forms of various expressions occurring in the analysis become as simple
as possible [29]. Since the horizontal velocity of the fluid near the corner @oihtof a thick

barrier has a cubic-root singularity, derived by a simple conformal mapping argument for the
flow of an ideal fluid around a corner, we expect that a basis fungijciiy) must satisfy

4y ~o(y—In~? asy— 1. (A2.1)
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Porter €f. Evans and Fernyhough [29]) suggested that a basis function which satisfies the
requirement (A2.1), can be chosen in terms of ultraspherical Gegenbauer polynomials of order
1/6 with suitable weights. We give below the forms of the basis functions in various intervals
along with the reasons for choosing such forms.

() y € Ly = (a, h).
In this case, the velocitieB*-?(y) satisfy

Fy) ~ @ —a) ™ asy —»a+0. (A2.2)

Sincegy® = 0 on y = h, ¢ and hence™“(y) o ¢;“(b, y) can be continued as an even
function of y acrossy = h i.e. it is an even function ok — y. Thus, the even continuous
function {(h — a)®> — (h — y)?}~Y3F*%(y) can be expanded i, /) in terms of even ultra-
spherical Gegenbauer polynomiz(]%ﬁle(h — y/h — a). However, F*(y) has to satisfy the
additional requirement that (see Equation (3.18))

h
/ F*(y)dy =0. (A2.3)
Noting the results
h
1 1/6 h—y
| mer—a s (h - a) @

0 form=>0

1 ! 2\—1
__ _ -1/3,~1/6 .
= 2/_1(1 1) TEC () de = 1 4 T orm = 0 (A2.4)
INE)) ’

we observe that the basis functions fot(y) are to be chosen starting from a function which
involves C3'®. However, forF¢(y) the basis functions start froy’®. Thus we choose the

basis functions foF*(y) and F(y) in the present case as

S = g () m=0,12,...,

(A2.5)
() = gy m=012...,
where
2781 (1/6)(2m)! 16 (h—y
D) = /6 . A2.6
&n (¥) 2T (2m + %)(h — a)V3{(h —a)2— (h — y)2}1/3C2m (h _ > ( )

(i) y e Ly = (0, ¢).

In this case we have to consider the free-surface condition and the beh&vibur) ~
(c —y) Y3 asy — ¢ — 0 derived by considering the flow field near the corner p@nt).
ThusF*“(y) = F(y) in this case satisfies

KF(y)+ F'(y) =0, y=0, (A2.7)

F(y)~(c—y)™¥ asy—»c—0. (A2.8)
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If we introduceF (y) defined by

f(y):F(y)—K/ Fu)du, O<y<c (A2.9)
y
then,
F(»=0 y=0, (A2.10)
Fo)~@-»"® asy—c-0. (A2.11)

The condition (A2.10) shows thﬁ(y) can be contip\ued as an even functiory dfito (—c, 0).
Thus, because of the condition (A2.11)? — y?)Y/3F (y) can be expanded i, ¢) as a com-
plete set of even ultraspherical Gegenbauer polynom]éﬂ,%(y/c). Thus the basis functions
for F*-“(y) in this case are found to be

d ¢
S ) = [n () = fu(y) = o [e""/ e fu(®) dt] , O<y<c (A2.12)
y

where f,,(y) is chosen as

2"/°r (1/6)(2m)! 1/6 (y

fm(y) = Tt %)01/3(c2 — 2o Z>’ O<y<ec. (A2.13)

(i) y € Ly=(0,a) + (c, h).

In this case we have to choose two sets of basis functigjys(y) for 0 < y < a and
g (y) for c < y < h. The choice forp;;*(y) is the same as that given by the expression
in the relation (A2.12) (along with (A2.13)) with replaced bya, and similarly,q;,(y) for
¢ < y < his the same as the expression given in the relation (A2.5) avitbplaced by
while g5 (y) for ¢ < y < h is the same as the expression given in the relation (A2.6) avith
replaced by.

(iv) y € Ls=(a,c).

In this case we have to consider only the behaviBtf (y) ~ (y —a) Y3 asy - a +0
andF*%(y) ~ (c — y) 3 asy — ¢ — 0. Also F*(y) satisfies the additional requirement (see
Equation (3.25))

/C F’(y)dy =0. (A2.14)

Noting again the result

¢ 1 1/6 2y —a—c
/a(%)m{(y—a)(c—y)}l/g’c" ( c—a )dy

1
= / A—-H3cY®t)ydt =0 forn >0, (A2.15)
-1
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we observe that the basis functions fof(y)(a < y < c) are given by

o) =gy, m=012 .., (A2.16)

m—+1

while the basis functions faF“(y)(a < y < ¢) are given by

fon =82, m=012..., (A2.17)
where
¢@(y) = 2{6F(1/6)m! 16 (2y —a-— c) |
" aT(m +1/3(SHP(( —a)e =y " " c—a
a<y=<c (A2.18)
Appendix lll.  Expressions for K2, d>2etc

() ForL = L1 = (a, h) , we find that

s _ 8o gy i {4J2n+(13/6){kr(h — )} omt3p ik (h —a)}
" cosif koh — 8- {k,(h — a)}1/3
2 rb Jony3/6) () J2mg13/6)(rm)
+-= coth-— s . (A3.1)

whereJ’s are Bessel functions of first kind, and

S 1 Dyyazptko(h —a)}

d = A3.2
"™ coshkgh  {ko(h —a)}¥/® ° ( )

where I's are modified Bessel functions of first kind. The expressionKgy, is obtained
from K _,,_, with ‘coth’ replaced by ‘tanh’ and inserting an extra te(@@xb/h — a)/
(2Y3/{T'(1/3)}*) 80.80m inside the square bracket, whekg = 1 for n = 0 andsg, = O for
n > 1. We also note that

di=d, _,. (A3.3)

m m

(i) For L = L, = (0, ¢) , we find that

s do 4(—1ym+n i {C052 keh Jon41/6) (kr€) Jomy1/6) (KrC)
"t coslit koh — 5 (kyc)1/3
cotha, b cog a,c Jon+1/6) (@) Jom(1/6) (@rC)
Vr (Oer)l/3
__ Cotagb coshanc Jont1/6)(@0C) Lo 4 1/6) (00C) (A3.4)
Yo ° (age)1/3 ’ '
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T2y (1/6) (koc)
(koc)*/®

and the expression fdf¢  is obtained fronk;  in the relation (A3.4) by replacing ‘coth’ by
‘tanh’ and ‘—cot’ by ‘tan’.

(i) For L = Lz = (0,a) + (c, h), we find thatG?,, is obained fromk?  in the relation
(A3.4) by replacing: by a while Q¢ is obtained fromK¢ in the relation (A3.1) by replacing

mn mn
a by c. Again, H,  is given by

s,a __

(A3.5)

_A=Dtsg =, cosk,h Jouy 136y lke (h — €)Y omya3e) (kra)

s A3.6

" costtkeh = 6, {kr (h — )}k a)t/® (A36)
andP;  is given by

Py = Hyy. (A3.7)

We obtain the expression far,, from K, in the relation (A3.4) by replacing by a, ‘coth’

mn

by ‘tanh’ and ‘cot’ by ‘tan’, while we have the relations:

H,,=H, , 1. (A3.8)
Pr(rlm = P/fl—l,n’ (A39)
OQon = Qom—1n-1- (A3.10)
Lom1/6)(koa)
dypr = 0 A3.11
4 (koa)¥/® (A3.11)
1 Duiaelkoth — o))
@s _ 2m+(7/6) 1Ko A3.12
m 7 coshkoh  {ko(h —c)}1/6 ( )
) =d, (A3.13)
d2e=d,>. (A3.14)
(V)T =Ls=(a,c.
ko % i 4 ( (—1)"Y2 cosk, (h — %) )
" costfkoh | | 8t (GHYR N\ (=12 sink, (h — <52)
(=)™ +Y2cosk, (h — <52)
(=D™/2sink, (h — %)
c—a c—a
I k, I k.
X Jn+(7/6) ( > ) +(7/6) ( 2 )
2 \** b ((=1)"2cosZ
+— coth-Z b - 2
r c—a (-1 sin=-
rm riw
X Jnt(7/6) (7) In+1/6) (7>H ) (A3.15)
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where the upper terms are for oddoddm while the lower ones are for even evenm.

(_l)erl eko(hf(cha/Z)) + efko(hf(c+a/2)) Im+(7/6)(k0%)

d’ =
" 2 coshkoh (ko5%)Y/6

(A3.16)

K, is obtained fromk; , ,_; with ‘coth’ replaced by ‘tanh’ and by insertion of the extra
term(12b/c — a)(2Y3/{T"($)}*)80.80x inside the square bracket. Finally,

d° =d'_,. (A3.17)

Appendix IV.  Effect of the introduction of a constant in the solution of
¢S(x,J’)(0<x<b,y€Lj 7j=1’3’4)

We prove here that, in the present method of calculation of the reflection coefficient, the
introduction of the constant term in the solutiongdf(x, y) in the region O< x < b,y €
L; (j =134, does not have any effect. We consider the case L, only. The cases
y € Lz ory € L4 can be dealt with similarly.
Let us include a constar] to the expression fap* (x, y) given in the relation (3.8),e.
¢*(x, y) is now expressed as

¢°(x,y) = B + E B’coshh osnnh(y_a), O<x<ba<y<h (A4
—d —d
n=1

whereB; (n > 1) is given by the relation (3.20).
To flnd By, we use thentegral law of action and reactiokcf. Driemeret al. [33]) to the
sectiona < y < h atx = b, so that

h h
/ ¢S(b—0)dy=/ ¢* (b + 0) dy. (A4.2)

In the Equation (A4.2), we evaluate the left side by using the expressigf(of y) given in
(A4.1) and the right side by using the expressiorptfx, y) given in Equation (3.6). Thus,
we find that

(e9]

1 [1+ R smhko(h—a) 3 . sink, (h — a)j|

B = (A4.3)

h —a | coshkoh ~ k,

whereA? (n > 1) is given in the relation (3.17).

Agaln we find thatM* (y, u) for this case is changed ey (y, u) whereM{(y, u) is given
by

8o i cosk, (h — u) sink,(h — a)

My, u) = M (v, u) —
o) = M) = Rk = 6 kh—a

(A4.4)

In Equation (A4.4), the expression fo¥*(y, u) is given by Equation (Al.1), and the
second term arises due to the introductionBgfin ¢*(x, y). We note that this second term
does not involve the variablg

194831.tex; 6/05/1999; 13:03; p.22



Water-wave scattering by thick vertical barrier383

Thus, Equation (3.27) for this case is changed to

h sinhko(h — a)
F* ) du = hko(h — y) — —— A4.5
/a (W) Mo(y, ) Qu = e [cos o(h —y) folh —a) } (A4.5)
where the second term in the right side arises due to the presedgarod’ (x, y).
The Equation (3.35) for this case is changed to
N
> aLy, =D, m=012..N (A4.6)
n=0
where
h h
L, = / / Mo (y, u) f, ) f,,(y) du dy
Ky S0 Sk =) [T e /hf% ydy, (A47)
= — r —Uu u) Qu 5 .
"~ Goshkoh & 8,k (h—a) J, n S R
and
, sinhko(h — a) /h
D.S :dS _ s d A4.8
m = = — aycostign J, 0P (A48)

K being given by Equation (A3.1) and, being given by Equation (A3.2). By using
Equations (A2.5), (A2.6) and (A2.4), we find that

h h
f () dy = f gD (»dy=0, m=012...,N. (A4.9)

a

Using the result (A4.9) in Equation (A4.7) and (A4.8), we find that
L, =K, and D, =d,

mn?

so that Equation (A4.6) reduces to Equation (3.35). Thus, the introduction of a constant in the
solution of¢* for the case of type | barrier does not affect the final results.

We have also checked that for type Il and IV barriers, the introduction of a constant does
not affect Equation (3.35). Thus, the introduction of a constant term in the solutigriafy)
in the region O< x < b, y € L; (j = 1, 3, 4), does not affect the calculation of the reflection
coefficient by the present method, but it may affect the calculation of other hydrodynamic
guantities associated with the problem. This, however, has not been demonstrated here.
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