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Abstract. This paper is concerned with two-dimensional scattering of a normally incident surface wave train on
an obstacle in the form of a thick vertical barrier of rectangular cross section in water of uniform finite depth.
Four different geometrical configurations of the barrier are considered. The barrier may be surface-piercing and
partially immersed, or bottom-standing and submerged, or in the form of a submerged rectangular block not
extending down to the bottom, or in the form of a thick vertical wall with a submerged gap. Appropriate multi-
term Galerkin approximations involving ultraspherical Gegenbauer polynomials are used for solving the integral
equations arising in the mathematical analysis. Very accurate numerical estimates for the reflection coefficient
for each configuration of the barrier are then obtained. The reflection coefficient is depicted graphically against
the wave number for each configuration. It is observed that the reflection coefficient depends significantly on the
thickness for a wide range of values of the wave number, and as such, thickness plays a significant role in the
modelling of efficient breakwaters.
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1. Introduction

Breakwaters are constructed to protect a sheltered area by reflecting back the incident waves
into the rough sea. The problems of water wave scattering by breakwaters modelled as thin
vertical barriers of various configurations have been studied extensively in the literature under
the assumption of linear theory during the last fifty years. The four basic configurations such
as a surface-piercing partially immersed barrier, a submerged bottom-standing barrier, a sub-
merged plate of finite vertical height and a wall with submerged gap or gaps have been used
as basic models of breakwaters in the literature because of their simplicity in the engineering
design and most importantly due to the ability to solve the associated water wave scattering
problems expicitly for normally incident surface water waves in infinitely deep water. For
these problems the velocity potential describing the resulting fluid motion can be obtained
in closed form and the physical quantities of interest, such as the reflection and transmission
coefficients, can also be obtained in terms of known functions or definite integrals (seee.g.
[1–8]). A variety of mathematical techniques have been used to obtain the explicit solutions
to these problems. The reason for the existence of explicit solutions is the fact that each of
these problems is equivalent to solving the two-dimensional Laplace equation in a half plane
with the condition of zero normal derivative of the function being sought for and the mixed
condition on the free surface. By the use of complex variable theory, each problem can be
reduced to finding a complex function satisfying certain conditions and having certain sin-
gularities, and this is somewhat straightforward in principle to obtain (see [9]). For obliquely
incident waves, the complex-variable theory is not applicable and as such the explicit solutions
to these problems are perhaps no longer possible to obtain. The same conclusion also applies
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if the water is of uniform finite depth, while the waves are incident normally or obliquely
on a barrier. In these cases, the associated water-wave scattering problems must be tackled
mathematically by some approximate methods in order to obtain numerical estimates for the
reflection and transmission coefficients.

For obliquely incident waves on a surface-piercing thin vertical barrier partially immersed
in deep water, Evans and Morris [10] obtainined good complementary bounds for the re-
flection coefficient by using single-term Galerkin approximations for solving two integral
equations, one for the horizontal velocity across the gap below the barrier and the other for the
difference of velocity potential across the barrier. The single-term approximations are chosen
in terms of the explicit results of Ursell [1]. The bounds involve some definite integrals, and
when computed numerically, coincide up to one or two decimal places, and as such their aver-
ages produce fairly good numerical estimates for the reflection coefficient. Again, for oblique
incidence on a thin vertical plate or a wall with a gap submerged in deep water Mandal and Das
[11] and Das [12]et al.used this technique successfully to obtain fairly good estimates for the
reflection coefficient in each case. In fact, any water-wave scattering problem involving a thin
vertical barrier with gaps above or below or in between, in deep or uniform finite depth water,
can be tackled by this technique in principle, wherein the single-term approximations involve
the corresponding exact solutions for normal incidence and deep water. However, there is no
guarantee that the technique would result in good complementary bounds for any scattering
problem involving a vertical barrier. For example, when surface waves are obliquely incident
on a thin vertical barrier submerged in deep water, Evans and Morris [10] reported that the
bounds are not very close and as such the single-term approximation technique is not suitable
for this case.

In water of uniform finite depth, Losada [13]et al. investigated two oblique wave scattering
problems involving a thin vertical barrier with gaps by a method in which each problem is re-
duced to finding the solution of a dual series relation. Using the principle of least squares, they
reduced the dual-series relation to an infinite linear system which was then solved numerically
after truncation, and this solution was utilized to obtain the reflection and transmission coeffi-
cients numerically. The case of normal incidence could be tackled by the same method. Later
Mandal and Dolai [14] utilized the single-term Galerkin approximation technique involving
the corresponding known exact solutions for normally incident waves in deep water to obtain
very accurate bounds for the reflection coefficients for four water-wave scattering problems
involving thin vertical barriers with gaps in finite depth water.

Several scattering problems involving two symmetrical thin vertical barriers with gaps
have also been tackled by the single-term Galerkin approximation technique. By virtue the
geometrical symmetry, each problem was replaced by two separate problems, each involving
a single barrier, which was then tackled by this technique. For the case of infinitely deep
water, Evans and Morris [15] earlier used this technique to handle the problem of water-wave
scattering by two thin vertical parallel barriers immersed to a given depth below the free
surface. Recently, Kanoria and Mandal [16], Banerjea [17]et al. investigated a number of
oblique wave-scattering problems involving two symmetrical thin vertical barriers with gaps
in uniform finite depth water by using this technique. It may be noted that the numerical
estimates for the reflection coefficients in each of these problems are accurate mostly up to
one or two decimal places depending on the wave number of the incident wave field and the
geometry of the barriers.

As mentioned earlier, the single-term Galerkin approximation technique does not always
lead to even moderately accurate bounds for the reflection coefficients in a number of wave-
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scattering problems involving thin vertical barriers either in deep water or in water of uniform
finite depth. Thus, the technique needs to be modified. An obvious modification is perhaps
the use of multi-term Galerkin approximations. For single-term approximations, the exact
solutions for deep water and normal incidence of the waves involving the barrier have been
utilized. However, for multi-term approximations, we need to find appropriate basis functions
in terms of which multi-term expansions can be made. Although, in principle, any set of
independent functions would serve the purpose, in practice, the basis functions are to be
chosen suitably such that very accurate numerical estimates for the reflection and transmission
coefficients are obtained with minimum effort. For a number of scattering problems involving
thin vertical barriers, Porter and Evans [9] showed how appropriate basis functions in terms of
Chebyshev polynomials can be chosen to produce extremely accurate numerical results with
minimum effort. Banerjea [17]et al. and Das [18]et al. utilized the multi-term Galerkin ap-
proximation technique successfully for a number of water-wave scattering problems involving
two symmetric thin vertical barriers with gaps in finite-depth water.

For a thin wall with a submergednarrowgap, the method of matched asymptotic expansion
has been utilized with great success to study the related water wave scattering problems. Tuck
[19] first used this method to obtain an approximate expression for the transmission coefficient
when a surface wave train is normally incident on a thin vertical wall with anarrow gap
submerged in deep water. Although the explicit solution to this problem, when the gap is not
necessarily narrow, was obtained by Porter [7] shortly afterwards, Tuck [20] later mentioned
the usefulness of the approximate result for the transmission coefficient for a narrow gap over
Porter’s [7] result which is limited to sharp edged gaps in plane walls of zero thickness. Pack-
ham and Williams [21] generalised Tuck’s [19] narrow-gap problem in deep water to water of
uniform finite depth and used an integral-equation formulation based on application of Green’s
integral theorem in the fluid region to tackle the problem. They solved the integral equation
approximately by exploiting the concept of narrowness of the gap and used this solution to
obtain an expression of the transmission coefficeint, which reduces to Tuck’s [19] result as the
depth of water is made to tend to infinity. Also, Mandal [22] reinvestigated Tuck’s [19] narrow-
gap problem by using an integral-equation formulation based on Havelock’s [23] expansion
of water-wave potential. These authors solved the integral equation approximately by using
the method of Packham and Williams [21] and then Tuck’s [19] approximate expression for
the transmission coefficient was derived.

Guiney [24] et al. extended the work of Tuck [19] to include the effect of thickness in
a vertical wall of rectangular cross section while Owen and Bhatt [25] considered the case
of a narrow gap in a thick barrier of arbitrary cross section. Tuck [20] also discussed the
role of matched-asymptotic-expansion technique in some detail in tackling problems of flow
through small holes in an expository article. Liu and Wu ([26], [27]) used Tuck’s [19] method
of matched asymptotic expansions to investigate oblique wave scattering by a thick wall
with a submerged narrow gap in finite-depth water and also in deep water. However, their
investigation was actually limited to the long-wave case only, since they approximated the
modified Helmholtz equation in two dimensions by the Laplace equation for obtaining the
inner solution. It may be noted that the method of matched asymptotic expansions is not
suitable for narrow gaps.

When the breakwaters are modelled as thick vertical barriers with rectangular cross sec-
tions in water of uniform finite depth, the corresponding water-wave scattering problems for
normal incidence of a surface wave train were investigated by Mei and Black [28] for surface-
piercing and bottom-standing barriers. They used a variational formulation to obtain numerical
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estimates for the reflection coefficient with an accuracy within one percent and presented
graphically the numerical results.

In this paper we consider two-dimensional scattering of a train of surface water waves nor-
mally incident on a thick vertical barrier of rectangular cross section in water of uniform finite
depth. The barrier has four different geometrical configurations designated by type I, type
II, type III and type IV depending on whether it is surface piercing and partially immersed,
bottom standing and submerged, in the form of a submerged rectangular block not extending
down to the bottom, or in the form of a thick vertical wall with a submerged gap. In the
latter configuration, the gap is not necessarily narrow. By use of the geometrical symmetry
of a barrier about its center line, the scattering problem for each type of barriers is split
into two separate problems involving the symmetric and anti-symmetric potential functions
describing the resulting motion in the fluid. Appropriate eigenfunction expansions for each
of these potential functions in different regions followed by a matching process produce an
integral equation for the corresponding unknown horizontal component of velocity across the
vertical line through the corner points in the gap or gaps above or below the barrier. Also, for
each case of the symmetric and antisymmetric potential functions, a real quantity related to the
reflection coefficient is defined. This is expressed in terms of an integral expression involving
the aforesaid unknown velocity. Thus, once the integral equations are solved, the reflection
coefficient can be obtained. The two integral equations for each configuration of the barrier are
solved here by suitable multi-term Galerkin approximations involving ultraspherical Gegen-
bauer polynomials. This idea of multi-term approximation involving Gegenbauer polynomials
is due to Porter (cf. Evans and Fernyhough [29]) in connection with the mathematical study of
a water wave problem concerning edge waves travelling along a periodic coast line consisting
of a straight and vertical cliff face from which protrudes an infinite number of rectangular
barriers.

We obtain the numerical results for the reflection coefficient for each thick-barrier con-
figuration with a six-figure accuracy by choosing only four terms in the multi-term Galerkin
approximations, and these are also depicted graphically against the wave number. For type I
barriers, the resutls are compared with Mei and Black’s [28] results and good agreement is
achieved. For type II barriers, zeros of the reflection coefficient occur for a number of values
of the wave number. This is consistent with the observations of Mei and Black [28]. For
large horizontal length of type II barriers, the number of zeros of the reflection coefficient
as a function of the wave number increases, which is also consistent with the observation of
Newman [30] for long bottom obstacles. The results for type III barriers reduce to those for
type II barriers if we take the lower end very near to the bottom, while the results for type
IV barriers reduce to these for type I barriers if we make the height of the lower part very
small. These results provide some checks on the correctness of the numerical method utilized
here. Also, the results for type IV barriers are compared with narrow gap results of Packman
and Williams [21] for thin barriers. Agreement in the qualitative behaviour of the reflection
coefficient as a function of the wave number is seen to have been achieved.

2. Formulation of the problem

We consider a thick barrier of width 2bpresent in water of uniform finite depthh, and choose
the y-axis vertically downwards along the line of symmetry of the thick barrier so that the
wetted part of the barrier occupies the region−b 6 x 6 b, y ∈ L = Lj (j = 1,2,3,4).
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HereL1 = (0, a), L2 = (c, h), L3 = (a, c) andL4 = (0, a) + (c, h) (0 < a < c < h)

corresponding to type I, type II and type III and type IV barrier configurations respectively.
These configurations are described in Figure 1.

Figure 1. Definition sketch of the thick barriers.

Under the assumption of the linearised theory of water waves, a train of surface waves repres-
ented by the velocity potential Re{φ inc(x, y)e−iσ t } is normally incident on a thick barrier of a
particular configuration from a large distance on its right,φ inc(x, y) being given by

φ inc(x, y) = 2 coshk0(h− y)e−ik0(x−b)

coshk0h
, (2.1)

wherek0 is the unique real positive root of the transcendental equation

k tanhkh = K (2.2)

with K = σ 2/g, σ being the circular frequency of the incoming wave train,g being the
acceleration due to gravity. Let the resulting motion in the fluid be described by the velocity
potential Re{φ(x, y)e−iσ t }, thenφ(x, y) satisfies

∇2φ = 0 in the fluid region, (2.3)

Kφ + φy = 0 ony = 0,

{ |x| > b for type I, IV barrier,

|x| <∞ for type II, III barrier,
(2.4)

φx = 0 onx = ±b, y ∈ Lj for typej barrier(j = 1,2,3,4), (2.5)

r1/3∇φ is bounded asr → 0, (2.6)
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wherer is the distance from a submerged edge of the thick barrier,

φy = 0 ony = lj , |x| < b for typej barrier(j = 1,2,3,4), (2.7)

φy = 0 ony = h,
{ |x| <∞ for type I, III barrier,

|x| > b for type II, IV barrier
(2.8)

and finally,

φ(x, y) ∼
{
φ inc(x, y) + Rφ inc(−x, y) asx →∞,
T φ inc(x, y) asx →−∞, (2.9)

whereR andT are the reflection and transmission coefficients (complex) and are to be de-
termined for each barrier configuration. In Equation (2.7),l1 = a; l2 = c; l3 = a, c and
l4 = a, c corresponding to type I, II, III and IV barrier configurations depicted in Figure 1.

3. The method of solution

Due to geometrical symmetry of the thick barrier aboutx = 0, it is convenient to splitφ(x, y)
into a symmetric and antisymmetric partsφs(x, y) andφa(x, y), respectively, so that

φ(x, y) = φs(x, y) + φa(x, y), (3.1)

where

φs(−x, y) = φs(x, y), φa(−x, y) = −φa(x, y). (3.2)

Thus, we may restrict our analysis to the regionx > 0 only. Nowφs,a(x, y) satisfy Equations
(2.3) to (2.8) together with

φsx(0, y) = 0, φa(0, y) = 0, 0< y < h. (3.3)

Let the behaviour ofφs,a(x, y) for largex be represented by

φs,a(x, y) ∼ coshk0(h− y)
coshk0h

{
e−ik0(x−b) + Rs,a eik0(x−b)} asx →∞ (3.4)

whereRs andRa are unknown constants. By using Equations (2.9) we find that, these con-
stants are related toR andT by the equations

R, T = 1
2(R

s ± Ra)e−2ik0b. (3.5)

Now the eigenfunction expressions ofφs,a(x, y) satisfying Equations (2.3) to (2.5), (2.7),
(2.8), (3.3) and (2.4) (for(x > b)) in the different regions for each barrier configuration are
given below.
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Region I (x > b, 0< y < h):

φs,a(x, y) = coshk0(h− y)
coshk0h

{
e−ik0(x−b) + Rs,a eik0(x−b)}

+
∞∑
n=1

As,an coskn(h− y)e−kn(x−b), (3.6)

wherekn (n = 1,2, . . .) are the real positive roots of the equation

k tankh+K = 0. (3.7)

Region II (0< x < b, y ∈ L ≡ Lj = (0, h)− Lj, j = 1,2,3,4):

Fory ∈ L1 = (a, h), φs(x, y) andφa(x, y) are given by(
φs(x, y)

φa(x, y)

)
=
(

0

Ba0x

)
+
∞∑
n=1

 Bsn coshnπx
h−a

Ban sinh nπx
h−a

 cos
nπ(y − a)
h− a . (3.8)

A nonzero constant term in the expansion ofφs(x, y) is omitted here as its presence does
not affect the calculation of the reflection coefficient by the present method. This is explained
in detail in Appendix IV. However, there is no reason to believe that this constant is zero in
general. If its value is required (for example, to determine the vertical force on a barrier) then
it may be calculated by the method given in Appendix IV.

Fory ∈ L2 = (0, c), φs(x, y) andφa(x, y) are given by(
φs(x, y)

φa(x, y)

)
=
(
Cs0 cosα0x

Ca0 sinα0x

)
cosα0(c − y)

coshα0c

+
∞∑
n=1

(
Csn coshαnx

Can sinhαnx

)
cosαn(c − y), (3.9)

where±α0, ±iαn (n = 1,2, . . .) are the roots of the equation

α tanhαc = K. (3.10)

For y ∈ L3 = (0, a) + (c, h), φs,a(x, y) will have two types of expansions depending on
whether 0< y < a or c < y < h. For 0 < y < a, the expansions ofφs,a(x, y) are
similar to (3.9) withCs,an replaced byDs,a

n , αn replaced byβn (n = 0,1,2, . . .) andc replaced
by a, where±β0, ±iβn (n = 1,2, . . .) are the roots of the equation

β tanhβa = K. (3.11)

For c < y < h, the expansions ofφs,a(x, y) are similar to (3.8) withBsn replaced byEsn (n =
1,2, . . .), Ban replaced byEan (n = 0,1,2, . . .) anda replaced byc.

Fory ∈ L4 = (a, c), the expansions ofφs,a(x, y) are the same as given by Equation (3.8)
with Bsn replaced byHs

n (n = 1,2, . . .), Ban replacedHa
n (n = 0,1,2, . . .) andh replaced

by c.
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Let us now define

φs,ax (b + 0, y) = f s,a(y), 0< y < h. (3.12)

Then

f s,a(y) = 0 for y ∈ L ≡ Lj, (3.13)

and

φs,ax (b − 0, y) = f s,a(y) for y ∈ L ≡ (0, h)− L. (3.14)

Also, due to the edge condition described by (2.6), we must have the requirement that

f s,a(y) = 0(|y − l|−1/3) asy → l (3.15)

wherel ≡ lj for barrier of typej (j = 1,2,3,4).
Use of the expansion (3.6) forφs,a(x, y) in Equation (3.12) followed by Havelock’s [19]

inversion formula, produces, after noting the condition (3.13),

1− Rs,a = 4i coshk0h

δ0

∫
L

f s,a(y) coshk0(h− y)dy (3.16)

with

δ0 = 2k0h+ sinh 2k0h, As,an = −
4

δn

∫
L

f s,a(y) coskn(h− y)dy

with

δn = 2knh+ sin 2knh (n = 1,2, . . .). (3.17)

Substituting the expansions (3.8) forφs,a(x, y) in Equation (3.14) and using Fourier cosine
inversion, we find thatf s(y) for type I barrier satisfies the condition∫ h

a

f s(y)dy = 0, (3.18)

and the constantsBa0, B
s,a
n (n = 1,2, . . .) are obtained as

Ba0 =
1

h− a
∫ h

a

f a(y)dy, (3.19)

Bs,an =
2

nπ

(
1

sinh nπb
h−a

,
1

coshnπb
h−a

)∫ h

a

f s,a(y) cos
nπ(y − a)
h− a dy. (3.20)

The constantsCs,an (n = 0,1,2, . . .) appearing in Equations (3.9) are related tof s,a(y) for
type II barrier by the following expressions obtained by using Havelock’s inversion formula
in Equation (3.14) for 0< y < c:

C
s,a
0 =

4 coshα0c

γ0

(
− 1

sinα0b
,

1

cosα0b

)∫ c

0
f s,a(y) coshα0(c − y)dy (3.21)
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with

γ0 = 2α0c + sinh 2α0c,

Cs,an =
4

γn

(
1

sinhαnb
,

1

coshαnb

)∫ c

0
f s,a(y) cosαn(c − y)dy

with

γn = 2αnc + sin 2αnc (n = 1,2, . . .) (3.22)

For type III barrier, we derive expressions forDs,a
n fromCs,an by replacingαn by βn andγn

by εn (n = 0,1,2, . . .)

ε0 = 2β0a + sinh 2β0a, εn = 2βna + sinh 2βna (n = 1,2, . . .) (3.23)

andEsn is derived fromBsn (n = 1,2, . . .); we deriveEan from Ban (n = 0,1,2, . . .) by
replacinga by c and in this casef s(y) (c < y < h)must satisfy∫ h

c

f s(y)dy = 0. (3.24)

For type IV barrier,Hs
n is derived fromBsn (n = 1,2, . . .) and we deriveHa

n fromBan (n =
0,1,2, . . .) by replacingh by c and in this casef s(y) (a < y < c) must satisfy∫ c

a

f s(y)dy = 0. (3.25)

It may be noted that the condition (3.18) or (3.24) or (3.25) forf s(y) corresponding to
type I or type III or type IV barrier, may be regarded as the compatibility condition for the
existence of solution in the region|x| < b, y ∈ L1 or (c, h) or L4. This condition plays an
important role in the choice of the basis functions forf s(y) (y ∈ L1 or (c, h) or L4) (see
Appendix II).

Now matching ofφs,a(x, y) across the linex = b through the right corner points of the
gap, or gaps, gives rise to the relations

φs,a(b + 0, y) = φs,a(b − 0, y), y ∈ L, (3.26)

which ultimately produce the integral equations∫
L

F s,a(u)Ms,a(y, u)du = coshk0(h− y)
coshk0h

, y ∈ L, (3.27)

where

F s,a(y) = 4 cosh2 k0h

δ0(1+ Rs,a) f
s,a(y), y ∈ L, (3.28)

and Ms,a(y, u) (y, u ∈ L) are real and symmetric iny and u, and their expressions for
L = Lj (j = 1,2,3,4) are given in Appendix I.
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If we now define the constantsCs,a by

Cs,a = −i1− R
s,a

1+ Rs,a , (3.29)

then, by using the relations (3.16) and (3.28), we find that∫
L

F s,a(y)
coshk0(h− y)

coshk0h
dy = Cs,a. (3.30)

It is important to note thatF s,a(y) andCs,a are all real quantities. Thus, if the integral Equa-
tions (3.27) are solved, then these solutions can be utilized to obtainCs,a from the relation
(3.30), and these in turn produce the actual reflection and transmission coefficients|R| and
|T |, respectively, from the relations

|R| = |1+ C
sCa|

1
, |T | = |C

s − Ca|
1

with

1 = {1+ (Cs)2+ (Ca)2+ (CsCa)2}1/2, (3.31)

which are obtained from Equations (3.29) and (3.5).
To solve the integral Equations (3.27), we adopt a Galerkin approach. The functionsF s,a(y)

are approximated as

F s,a(y) ≈ F s,a(y), y ∈ L, (3.32)

whereF s,a(y) have multi-term Galerkin expansions in terms of suitable basis functions. We
note thatL1, L2, L4 are single intervals whileL3 consists of two disjoint intervals. For the
single intervalLj (j = 1,2,4), F s,a(y) are expressed as

F s,a(y) =
N∑
n=0

as,an f
s,a
n (y), y ∈ Lj (j = 1,2,4), (3.33)

and, for the double intervalL3 = (0, a)+ (c, h),F s,a(y) are expressed as

F s,a(y) =



N∑
n=0

as,an p
s,a
n (y), 0< y < a,

N∑
n=0

bs,an q
s,a
n (y), c < y < h,

(3.34)

where the basis functionsf s,an (y) for y ∈ Lj (j = 1,2,4) andps,an (y) for 0< y < a, qs,an (y)

for c < y < h are given in Appendix II, andas,an , b
s,a
n are unknown constants to be found

separately for each type of barrier as described below.
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WhenL = Lj (j = 1,2,4), we substitute the expansion (3.33) in Equations (3.27),
multiply by appropriatef s,am (y) and integrate overL to obtain the linear systems

N∑
n=0

as,an K
s,a
mn = ds,am , m = 0,1,2, . . . , N, (3.35)

where

Ks,a
mn =

∫
L

∫
L

Ms,a(y, u)f s,an (u)f s,am (y)dudy, m, n = 0,1,2, . . . , N, (3.36)

ds,am =
∫
L

coshk0(h− y)
coshk0h

f s,am (y)dy, m = 0,1,2, . . . , N. (3.37)

For eachLj (j = 1,2,4), the integrals in the relations (3.36) and (3.37) can be evaluated
explicitly, and these are given in Appendix III. Thus the constantsas,an (n = 0,1, . . . N) are
now obtained by solving the linear Equations (3.35) for each of type I, type II and type IV
barrier. The relations (3.30) produce

Cs,a =
N∑
n=0

as,an d
s,a
n , (3.38)

so thatCs,a are now found for each of the type I, type II and type IV barrier.
WhenL = L3 = (0, a) + (c, h), we substitute the expansions (3.34) in Equations (3.27)

for L = L3, multiply first by ps,am (y) (0 < y < a) and then byqs,am (y) (c < y < h) and
integrate over(0, a) and(c, h), respectively, to obtain the linear systems

N∑
n=0

as,an

(
Gs,a
mn

P s,amn

)
+

N∑
n=0

bs,an

(
Hs,a
mn

Qs,a
mn

)
=
(
d
(1)s,a
m

d
(2)s,a
m

)
, m = 0,1, . . . N, (3.39)

where

Gs,a
mn =

∫ a

0

{∫ a

0
Ms,a(y, u)ps,an (u)du

}
ps,am (y)dy,

H s,a
mn =

∫ a

0

{∫ h

c

Ms,a(y, u)qs,an (u)du

}
ps,am (y)dy,

P s,amn =
∫ h

c

{∫ a

0
Ms,a(y, u)ps,an (u)du

}
qs,am (y)dy,

Qs,a
mn =

∫ h

c

{∫ h

c

Ms,a(y, u)qs,an (u)du

}
qs,am (y)dy,

(3.40)

so that

P s,anm = Hs,a
mn ,
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and

d(1)s,am =
∫ a

0

coshk0(h− y)
coshk0h

ps,am (y)dy,

d(2)s,am =
∫ h

c

coshk0(h− y)
coshk0h

qs,am (y)dy. (3.41)

The integrals in the relations (3.40) and (3.41) can be evaluated explicitly and these are given
in Appendix III. Thus for type III barrier,as,an andbs,an (n = 0,1, . . . N) in the relations (3.34)
are obtained by solving the linear systems (3.39) andCs,a are approximated as

Cs,a =
N∑
n=0

{as,an d(1)s,an + bs,an d(2)s,an }. (3.42)

4. Numerical results

Since|R|2 + |T |2 = 1, we mostly confine our attention to the reflection coefficient|R| only.
Multi-term Galerkin approximations are used to obtain a numerical estimate for|R|. For each
barrier configuration we have to compute infinite series of the formKs,a

mn . These series are
computed numerically by truncation. A six-figure accuracy is achieved by taking 200 terms
in each series. However, the accuracy can be further increased by following a numerical pro-
cedure suggested by Porter and Evans [9] in the computation of series of this type. This is not
pursued here.

We display a representative set of numerical estimates for|R| for the four type of barriers
in Table 1, takingN = 0,1,2,3,4 and 5 in the(N + 1)-term Galerkin approximations and
some particular values of the different parameters and the wave number. It is observed from
this table that the computed results for|R| converge very rapidly withN , and forN > 3
an accuracy of almost six decimal places is achieved. It appears that the present numerical
procedure for the numerical computation of|R| is quite efficient.

Figure 2a. Reflection coefficient for type I barrier,
a/h = 1·2.

Figure 2b. Reflection coefficient vsk0a for type I
barrier,a/h = 0·5.
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Table 1. Reflection coefficient|R|.

Kh N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

Type I Barrier a/h = 0·2, b/h = 0·5
0·2 0·783791 0·778117 0·778024 0·778019 0·778019 0·778019
1·0 0·968121 0·967934 0·967934 0·967934 0·967934 0·967934
1·8 0·993855 0·992526 0·992543 0·992543 0·992543 0·992543

Type II Barrier c/h = 0·5, b/h = 0·5
0·2 0·446081 0·441869 0·441811 0·441808 0·441808 0·441808
1·0 0·007353 0·006603 0·006675 0·006679 0·006679 0·006679
1·8 0·364916 0·361848 0·361618 0·361602 0·361602 0·361602

Type III Barrier a/h = 0·2, c/h = 0·4, b/h = 0·5
0·2 0·648346 0·638165 0·637977 0·637966 0·637965 0·637965
1·0 0·924199 0·925042 0·925058 0·925058 0·925058 0·925058
1·8 0·865962 0·866637 0·866616 0·866616 0·866616 0·866616

Type IV Barrier a/h = 0·2, c/h = 0·4, b/h = 0·5
0·2 0·981698 0·981676 0·981676 0·981676 0·981676 0·981676
1·0 0·996937 0·996358 0·996358 0·996358 0·996358 0·996358
1·8 0·998484 0·998319 0·998319 0·998319 0·998319 0·998319

For asurface-piercing thick barrier(type I barrier), the computed results for|R| are plotted
in Figure 2(a) against the wave numberKh for a/h = 0·2 andb/h = 0·01,0·1,1·0. It is
observed from this figure that, for a fixed value of the wave numberKh, |R| increases with
the thickness of the barrier. Also,|R| increases asymptotically to unity as the wave number
becomes large, which is plausible, since, for large wave number, the incident wave train is
confined within a thin layer below the free surface and as such most of the incident wave
energy is reflected back by the surface-piercing barrier. Also, when the thickness is equal to
water depth,|R| becomes near unity for moderately large values of the wave number. In order
to compare our results with those of Mei and Black [28], in Figure 2(b) we have drawn|R|
againstk0a for b/h = 0·5, a/h = 0·5. This curve almost coincides with the corresponding
curve given in Figure 6 of Mei and Black [28].

For abottom-standing thick barrier(type II barrier),|R| is depicted in Figure 3 against
Kh for c/h = 0·5 andb/h = 0·01,1·0,2·0 and 5·0. It is observed that, when the barrier is
comparatively thin(b/h = 0·01), |R| first increases and then decreases asymptotically to zero
with the increase of the wave number. This is the usual behaviour of the reflection coefficient
for an infinitely thin barrier. However, as the thickness increases,|R| starts fluctuating and
the fluctuations become rapid as the thickness of the barrier further increases. For very large
wave number|R| becomes zero asymptotically, which is obvious, since the incident wave train
then does not penetrate enough below the free surface to feel the presence of the submerged
barrier. The oscillatory behaviour of|R| is due to interaction between the two ends of the thick
barrier. Also,|R| assumes zero values for a number of frequencies of the incident wave train.
This type of behaviour of|R| is consistent with the study of Mei and Black [28] for bottom-
standing barriers. The curve of|R| for b/h = 5·0 (large horizontal breadth) may be identified
with the curve given by Newman [30] for a long rectangular obstacle in which case the depth
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is infinite, except at the obstacle. Except for the low-frequency region, the qualitative nature
of the curves is similar. As the frequency parameter tends to zero,|R| tends to unity for deep
water (Newman’s figure), while in the case of water of finite depth,|R| tends to zero (Figure
3 here). This is the so-called low-frequency paradox mentioned by Tuck [20].

Figure 3. Reflection coefficient for type II barrier,
c/h = 0·5.

Figure 4. Reflection coefficient for type III barrier,
a/h = 0·2, c/h = 0·4.

For asubmerged thick rectangular block(type III barrier), |R| is plotted againstKh in
Figure 4 fora/h = 0·2, c/h = 0·4 andb/h = 0·01,1·0 and 2·0. Here also the thickness of
the barrier affects|R| significantly. For small thickness(b/h = 0·01), as in the case of a type
II barrier, |R| first increases and then decreases to zero asymptotically as the wave number
increases. As the thickness increases,|R| starts oscillating and the occurrence of a number of
zeros of|R| is observed. The number of oscillations increases with the increase of thickness
as in the case of type II barrier. By looking at Figures 3 and 4, we also observe that there is
some similarity in the qualitative behaviour of|R| against the wave number for barriers of
type II and type III. In fact, if the gap between the lower end of a type III barrier and the
bottom is made very small, then this would behave almost like a bottom-standing barrier (type
II) although there will still be some transmission through the very small gap. In Figure 5 for a
type III barrier, we depicte|R|, againstKh takingb/h = 0·01,1·0,a/h = 0·5, c/h = 0·999,
so that the gap between the barrier and the bottom becomes very small. Also for a type II
barrier, we depicte|R|, in the same figure takingb/h = 0·01,1·0, c/h = 0·5. It is observed
that the curve of|R| for type III barrier withb/h = 0·01 lies slightly below the curve of|R|
for type II barrier withb/h = 0·01. The small difference in the two curves is due to some
small transmission of the incident wave energy below the type III barrier as there is still some
gap, although very narrow, between its lower end and the bottom. However forb/h = 1·0,
the two curves practically coincide. This is due to considerable increase in the thickness of the
barriers.

194831.tex; 6/05/1999; 13:03; p.14



Water-wave scattering by thick vertical barriers375

Figure 5. Reflection coefficient vs wave number. Figure 6. Reflection coefficient for type IV barrier,
a/h = 0·2, c/h = 0·4.

Finally, for a thick vertical wall with a submerged gap(type IV barrier),|R| is depicted
graphically againstKh in Figure 6 fora/h = 0·2, c/h = 0·4 andb/h = 0·01,0·1,1·0. It
is observed from this figure that|R| steadily increases as the wave numberKh increases and
asymptotically becomes unity for largeKh. Also, for a fixed wave number,|R| increases as
the thickness increases. It is interesting to observe that, when thickness is equal to the water
depth(b/h = 1·0), |R| very quickly becomes near unity for even moderate values of the wave
number. A similar behaviour of|R| is also observed for type I barrier, although in that case
the wave number is moderately large. Again, from the Figures 2(a) and 6 it is observed that
there is some similarity in the qualitative behaviour of|R| for the type I and type IV barriers.
In both cases|R| increases asymptotically to unity and there is no oscillation in|R|. This is
due to the fact that both barriers are surface piercing. In fact, if we confine the lower part of
the type IV barrier near the bottom by makingc/h nearly unity, then it assumes the form of a
type I barrier and thus we expect that the curves of|R| for the two types of barrier in that case
should be very near to each other. In Figure 7, for a type IV barrier,|R| is plotted againstKh
for a/h = 0·2, b/h = 0·1, c/h = 0·999 and|R| for a type I barrier is plotted for the same
values ofa/h andb/h. The two curves almost coincide. Finally, to compare our results for
a type IV barrier with the results of Packham and Williams [21] for a submergednarrow gap
in an infinitely thin wall, for a type IV barrier, we plot|T |2 ≡ 1− |R|2 in Figure 8 against
KH(H = (a + c)/2), takingc/h = 0·86, a/h = 0·74 andb/h = 0·01,0·001, so that the
thickness of the barrier is small and the gap is narrow. The qualitative behaviour of the two
curves depicting|T |2 againstKH is observed to be very similar to the curve for|T |2 (the
upper most curve in Figure 1 of [21]) given by Packham and Williams [21] for an infinitely
thin barrier. It may be noted that for deep water|T |2 → 0 asKH → 0, while for water of
finite depth|T |2→ 1 asKH → 0 and the latter is observed in Figure 8. This is the so called
low-frequency paradox mentioned earlier.
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Figure 7. Reflection coefficient vs wave number,
b/h = 0·1.

Figure 8. Type IV barrier, transmission coefficient vs
K(a + c)/2.

For all the four types of thick rectangular vertical barriers it is observed that the long-
wave limit of the reflection coefficient|R| is zero as is evident from the Figures 2–7. Martin
and Dalrymple [31] and McIver [32] confirmed, by using the method of matched asymptotic
expansions, that the long-wave limit of|R| for any obstacle is zero. This provides a partial
check on the correctness of the numerical method utilized here.

5. Conclusion

The method of multi-term Galerkin approximations in terms of ultraspherical Gegenbauer
polynomials has been utilized here to obtain very accurate numerical estimates for the reflec-
tion coefficient in the water wave scattering problems involving thick rectangular barriers of
four different geometrical configurations in water of uniform finite depth. By choosing only
four terms in the Galerkin approximations, we achieve almost six-figure accuracy in the nu-
merical estimate for the reflection coefficient. The numerical results are illustrated graphically,
and some results are compared with known results available in the literature, for which good
agreement is achieved. The thickness of a barrier affects the reflection coefficient considerably
and thus the thickness plays a significant role in the modelling of breakwaters.
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Appendix I. Expressions forMs,a(y,u)

(i) For y, u ∈ L1 = (a, h), we find thatMs(y, u) is given by

Ms(y, u)

= δ0

cosh2 k0h

[ ∞∑
n=1

{
coskn(h− y) coskn(h− u)

δn

+ 1

2nπ
coth

nπb

h− a cos
nπ(y − a)
h− a cos

nπ(u− a)
h− a

}]
. (A1.1)

The expression forMa(y, u) is obtained by replacing ‘coth’ by ‘tanh’in the relation (A1.1)
and inserting an extra termb/4(h− a) inside the square bracket.

(ii) For y, u ∈ L2 = (0, c), we find thatMs(y, u) is given by

Ms(y, u) = δ0

cosh2 k0h

[ ∞∑
n=1

{
coskn(h− y) coskn(h− u)

δn

+cothαnb cosαn(c − y) cosαn(c − u)
γn

− cotα0b
cosα0(c − y) cosα0(c − u)

γ0

}]
. (A1.2)

The expression forMa(y, u) is obtained by replacing ‘coth’ by ‘tanh’ and ‘− cot’ by ‘tan’ in
the relation (A1.2).

(iii) For y, u ∈ L3 = (0, a) + (c, h).
For y, u ∈ (0, a),Ms (y, u) is obtained from the relation (A1.2) by replacingc by a and

similarly for Ma(y, u). For y, u ∈ (c, h), Ms(y, u) is obtained from the relation (A1.1) by
replacinga by c and similarly forMa(y, u). Fory ∈ (0, a), u ∈ (c, h) andy ∈ (c, h), u ∈
(0, a),

Ms(y, u) =Ma(y, u) = δ0

cosh2 k0h

∞∑
n=1

coskn(h− y) coskn(h− u)
δn

. (A1.3)

(iv) For y, u ∈ L4 = (a, c),Ms(y, u) is obtained from the relation (A1.1) by replacingh
by c, and similarly forMa(y, u).

Appendix II. The basis functions

The basis functions are to be chosen such that they satisfy the appropriate physical require-
ments and the final forms of various expressions occurring in the analysis become as simple
as possible [29]. Since the horizontal velocity of the fluid near the corner point(b, l) of a thick
barrier has a cubic-root singularity, derived by a simple conformal mapping argument for the
flow of an ideal fluid around a corner, we expect that a basis functionf s,an (y) must satisfy

f s,an (y) ∼ O(|y − l|)−1/3 asy → l. (A2.1)
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Porter (cf. Evans and Fernyhough [29]) suggested that a basis function which satisfies the
requirement (A2.1), can be chosen in terms of ultraspherical Gegenbauer polynomials of order
1/6 with suitable weights. We give below the forms of the basis functions in various intervals
along with the reasons for choosing such forms.

(i) y ∈ L1 = (a, h).
In this case, the velocitiesF s,a(y) satisfy

F s,a(y) ∼ (y − a)−1/3 asy → a + 0. (A2.2)

Sinceφs,ay = 0 on y = h, φs,a and henceF s,a(y) ∝ φs,ax (b, y) can be continued as an even
function of y acrossy = h i.e. it is an even function ofh − y. Thus, the even continuous
function {(h − a)2 − (h − y)2}−1/3F s,a(y) can be expanded in(a, h) in terms of even ultra-
spherical Gegenbauer polynomialsC1/6

2m (h − y/h − a). However,F s(y) has to satisfy the
additional requirement that (see Equation (3.18))∫ h

a

F s(y)dy = 0. (A2.3)

Noting the results∫ h

a

1

{(h− a)2 − (h− y)2}1/3(h− a)1/3C
1/6
2m

(
h− y
h− a

)
dy

= 1

2

∫ 1

−1
(1− t2)−1/3C

1/6
2m (t)dt =


0 form > 0

3
√
π0( 2

3 )

0( 1
6 )

for m = 0,
(A2.4)

we observe that the basis functions forF s(y) are to be chosen starting from a function which
involvesC1/6

2 . However, forFa(y) the basis functions start fromC1/6
0 . Thus we choose the

basis functions forF s(y) andFa(y) in the present case as

f sm(y) = g
(1)
m+1(y) m = 0,1,2, . . . ,

f am(y) = g(1)m (y) m = 0,1,2, . . . ,
(A2.5)

where

g(1)m (y) =
27/60(1/6)(2m)!

π0(2m+ 1
3)(h− a)1/3{(h− a)2− (h− y)2}1/3

C
1/6
2m

(
h− y
h− a

)
. (A2.6)

(ii) y ∈ L2 = (0, c).
In this case we have to consider the free-surface condition and the behaviourF s,a(y) ∼

(c − y)−1/3 asy → c − 0 derived by considering the flow field near the corner point(b, c).
ThusF s,a(y) ≡ F(y) in this case satisfies

KF(y) + F ′(y) = 0, y = 0, (A2.7)

F(y) ∼ (c − y)−1/3 asy → c − 0. (A2.8)
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If we introduceF̂ (y) defined by

F̂ (y) = F(y)−K
∫ c

y

F (u)du, 0< y < c (A2.9)

then,

F̂ ′(y) = 0, y = 0, (A2.10)

F̂ (y) ∼ (c − y)−1/3 asy → c − 0. (A2.11)

The condition (A2.10) shows that̂F(y) can be continued as an even function ofy into (−c,0).
Thus, because of the condition (A2.11),(c2− y2)1/3F̂ (y) can be expanded in(0, c) as a com-
plete set of even ultraspherical Gegenbauer polynomialsC

1/6
2m (y/c). Thus the basis functions

for F s,a(y) in this case are found to be

f sm(y) = f am(y) = fm(y) = −
d

dy

[
e−ky

∫ c

y

eKt f̂m(t)dt

]
, 0< y < c (A2.12)

wheref̂m(y) is chosen as

f̂m(y) = 27/60(1/6)(2m)!
π0(2m+ 1

3)c
1/3(c2− y2)1/3

C
1/6
2m

(y
c

)
, 0< y < c. (A2.13)

(iii) y ∈ L3 = (0, a)+ (c, h).
In this case we have to choose two sets of basis functions,ps,am (y) for 0 < y < a and

qs,am (y) for c < y < h. The choice forps,am (y) is the same as that given by the expression
in the relation (A2.12) (along with (A2.13)) withc replaced bya, and similarly,qsm(y) for
c < y < h is the same as the expression given in the relation (A2.5) witha replaced byc
while qam(y) for c < y < h is the same as the expression given in the relation (A2.6) witha

replaced byc.

(iv) y ∈ L4 = (a, c).
In this case we have to consider only the behaviourF s,a(y) ∼ (y − a)−1/3 asy → a + 0

andF s,a(y) ∼ (c− y)−1/3 asy → c− 0. AlsoF s(y) satisfies the additional requirement (see
Equation (3.25))∫ c

a

F s(y)dy = 0. (A2.14)

Noting again the result∫ c

a

1

( c−a2 )
1/3{(y − a)(c − y)}1/3C

1/6
n

(
2y − a − c
c − a

)
dy

=
∫ 1

−1
(1− t2)−1/3C1/6

n (t)dt = 0 for n > 0, (A2.15)

194831.tex; 6/05/1999; 13:03; p.19



380 Mridula Kanoria et al.

we observe that the basis functions forF s(y)(a < y < c) are given by

f sm(y) = g(2)m+1(y), m = 0,1,2, . . . , (A2.16)

while the basis functions forFa(y)(a < y < c) are given by

f am(y) = g(2)m (y), m = 0,1,2, . . . , (A2.17)

where

g(2)m (y) =
21/60(1/6)m!

π0(m+ 1/3)( c−a2 )
1/3{(y − a)(c − y)}1/3C

1/6
m

(
2y − a − c
c − a

)
,

a < y < c. (A2.18)

Appendix III. Expressions for Ks,a
mn, d

s,a
m etc

(i) ForL = L1 = (a, h) , we find that

Ks
mn =

δ0

cosh2 k0h

[
(−1)m+n

∞∑
r=1

{
4J2n+(13/6){kr(h− a)}J2m+(13/6){kr(h− a)}

δr{kr(h− a)}1/3

+ 2

rπ
coth

rπb

h− a
J2n+(13/6)(rπ)J2m+(13/6)(rπ)

(rπ)1/3

}]
, (A3.1)

whereJ ’s are Bessel functions of first kind, and

dsm =
1

coshk0h

I2m+(13/6){k0(h− a)}
{k0(h− a)}1/6 , (A3.2)

whereI ’s are modified Bessel functions of first kind. The expression forKa
mn is obtained

from Ks
m−1,n−1 with ‘coth’ replaced by ‘tanh’ and inserting an extra term(12πb/h− a)/

(21/3/{0(1/3)}4) δ0nδ0m inside the square bracket, whereδ0n = 1 for n = 0 andδ0n = 0 for
n > 1. We also note that

dam = dsm−1. (A3.3)

(ii) For L = L2 = (0, c) , we find that

Ks
mn =

δ0

cosh2 k0h

[
4(−1)m+n

∞∑
r=1

{
cos2 krh

δr

J2n+(1/6)(krc)J2m+(1/6)(krc)
(krc)1/3

+cothαrb cos2 αrc

γr

J2n+(1/6)(αrc)J2m+(1/6)(αrc)
(αrc)1/3

}

−cotα0b

γ0
coshα0c

J2n+(1/6)(α0c)I2m+(1/6)(α0c)

(α0c)1/3

]
, (A3.4)
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ds,amn =
I2m+(1/6)(k0c)

(k0c)1/6
(A3.5)

and the expression forKa
mn is obtained fromKs

mn in the relation (A3.4) by replacing ‘coth’ by
‘tanh’ and ‘−cot’ by ‘tan’.

(iii) For L = L3 = (0, a) + (c, h), we find thatGs
mn is obained fromKs

mn in the relation
(A3.4) by replacingc by a whileQs

mn is obtained fromKs
mn in the relation (A3.1) by replacing

a by c. Again,Hs
mn is given by

Hs
mn =

4(−1)n+m+1δ0

cosh2 k0h

∞∑
r=1

coskrh

δr

J2n+(13/6){kr(h− c)}J2m+(13/6)(kra)

{kr(h− c)}1/6(kra)1/6 (A3.6)

andP smn is given by

P smn = Hs
nm. (A3.7)

We obtain the expression forGa
mn fromKs

mn in the relation (A3.4) by replacingc by a, ‘coth’
by ‘tanh’ and ‘cot’ by ‘tan’, while we have the relations:

Ha
mn = Hs

m,n−1, (A3.8)

P amn = P sm−1,n, (A3.9)

Qa
mn = Qs

m−1,n−1, (A3.10)

d(1)sm = I2m+(1/6)(k0a)

(k0a)1/6
, (A3.11)

d(2)sm = 1

coshk0h

I2m+(7/6){k0(h− c)}
{k0(h− c)}1/6 , (A3.12)

d(1)am = d(1)sm , (A3.13)

d(2)am = d(2)sm−1. (A3.14)

(iv) L = L4 = (a, c).

Ks
mn =

δ0

cosh2 k0h

[ ∞∑
r=1

{
4

δr(kr(
c−a

2 )
1/3

(
(−1)n+1/2 coskr(h− c+a

2 )

(−1)n/2 sinkr(h− c+a
2 )

)

×
(
(−1)m+1/2 coskr(h− c+a

2 )

(−1)m/2 sinkr(h− c+a
2 )

)

×Jn+(7/6)
(
kr
c − a

2

)
Jm+(7/6)

(
kr
c − a

2

)

+
(

2

rπ

)4/3

coth
rπb

c − a
(
(−1)n+1/2 cosrπ2
(−1)n/2 sin rπ

2

)

× Jn+(7/6)
(rπ

2

)
Jm+(7/6)

(rπ
2

)}]
, (A3.15)
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where the upper terms are for oddn, oddm while the lower ones are for evenn, evenm.

dsm =
(−1)m+1 ek0(h−(c+a/2)) + e−k0(h−(c+a/2))

2 coshk0h

Im+(7/6)(k0
c−a

2 )

(k0
c−a

2 )
1/6

. (A3.16)

Ka
mn is obtained fromKs

m−1,n−1 with ‘coth’ replaced by ‘tanh’ and by insertion of the extra
term(12πb/c− a)(21/3/{0(1

3)}4)δ0nδ0m inside the square bracket. Finally,

dam = dsm−1. (A3.17)

Appendix IV. Effect of the introduction of a constant in the solution of
φs(x,y)(0<x<b,y∈Lj,j=1,3,4)

We prove here that, in the present method of calculation of the reflection coefficient, the
introduction of the constant term in the solution ofφs(x, y) in the region 0< x < b, y ∈
Lj (j = 1,3,4), does not have any effect. We consider the casey ∈ L1 only. The cases
y ∈ L3 or y ∈ L4 can be dealt with similarly.

Let us include a constantBs0 to the expression forφs(x, y) given in the relation (3.8),i.e.
φs(x, y) is now expressed as

φs(x, y) = Bs0 +
∞∑
n=1

Bsn cosh
nπx

h− a cos
nπ(y − a)
h− a , 0< x < b, a < y < h, (A4.1)

whereBsn(n > 1) is given by the relation (3.20).
To findBs0, we use theintegral law of action and reaction(cf. Driemeret al. [33]) to the

sectiona < y < h atx = b, so that∫ h

a

φs(b − 0)dy =
∫ h

a

φs(b + 0)dy. (A4.2)

In the Equation (A4.2), we evaluate the left side by using the expression ofφs(x, y) given in
(A4.1) and the right side by using the expression ofφs(x, y) given in Equation (3.6). Thus,
we find that

Bs0 =
1

h− a

[
1+ Rs

coshk0h

sinhk0(h− a)
k0

+
∞∑
n=1

Asn
sinkn(h− a)

kn

]
, (A4.3)

whereAsn(n > 1) is given in the relation (3.17).
Again, we find thatMs(y, u) for this case is changed toMs

0(y, u) whereMs
0(y, u) is given

by

Ms
0(y, u) =Ms(y, u)− δ0

cosh2 k0h

∞∑
r=1

coskr(h− u)
δr

sinkr(h− a)
kr(h− a) . (A4.4)

In Equation (A4.4), the expression forMs(y, u) is given by Equation (A1.1), and the
second term arises due to the introduction ofBs0 in φs(x, y). We note that this second term
does not involve the variabley.
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Thus, Equation (3.27) for this case is changed to∫ h

a

F s(u)Ms
0(y, u)du = 1

coshk0h

[
coshk0(h− y)− sinhk0(h− a)

k0(h− a)
]
, (A4.5)

where the second term in the right side arises due to the presence ofBs0 in φs(x, y).
The Equation (3.35) for this case is changed to

N∑
n=0

asnL
s
mn = Ds

m, m = 0,1,2, . . . , N (A4.6)

where

Lsmn =
∫ h

a

∫ h

a

Ms
0(y, u)f

s
n (u)f

s
m(y)dudy

= Ks
mn−

δ0

coshk0h

∞∑
r=1

sinkr(h−a)
δrkr(h−a)

∫ h

a

coskr(h−u)f sn (u)du
∫ h

a

f sm(y)dy, (A4.7)

and

Ds
m = dsm −

sinhk0(h− a)
k0(h− a) coshk0h

∫ h

a

f sm(y)dy, (A4.8)

Ks
mn being given by Equation (A3.1) anddsm being given by Equation (A3.2). By using

Equations (A2.5), (A2.6) and (A2.4), we find that∫ h

a

f sm(y)dy =
∫ h

a

g
(1)
m+1(y)dy = 0, m = 0,1,2, . . . , N. (A4.9)

Using the result (A4.9) in Equation (A4.7) and (A4.8), we find that

Lsmn = Ks
mn and Ds

mn = dsmn,
so that Equation (A4.6) reduces to Equation (3.35). Thus, the introduction of a constant in the
solution ofφs for the case of type I barrier does not affect the final results.

We have also checked that for type III and IV barriers, the introduction of a constant does
not affect Equation (3.35). Thus, the introduction of a constant term in the solution ofφs(x, y)

in the region 0< x < b, y ∈ Lj (j = 1,3,4), does not affect the calculation of the reflection
coefficient by the present method, but it may affect the calculation of other hydrodynamic
quantities associated with the problem. This, however, has not been demonstrated here.

References

1. F. Ursell, The effect of a fixed vertical barrier on surface waves in deep water.Proc. Camb. Phil. Soc.43
(1947) 374–382.

2. H. Levine and E. Rodemich, Scattering of surface waves on an ideal fluid.Math. and Stat. Lab. Tech. Rep.
78, Stanford University (1958) 1–64.

3. M. Lewin, The effect of vertical barriers on progressive waves.J. Math. Phys.42 (1963) 287–300.
4. C. C. Mei, Radiation and scattering of transient gravity waves by vertical plates.Q. J. Mech. Appl. Maths.

19 (1966) 417–440.
5. W. E. Williams, Note on the scattering of water waves by a vertical barrier.Proc. Camb. Phil. Soc.62 (1966)

507–509.
6. D. V. Evans, Diffraction of surface waves by a submerged vertical plate.J. Fluid Mech.40 (1970) 433–451.

194831.tex; 6/05/1999; 13:03; p.23



384 Mridula Kanoria et al.

7. D. Porter, The transmission of surface waves through a gap in a vertical barrier.Proc. Camb. Phil. Soc.71
(1972) 411–421.

8. Sudeshna Banerjea, Scattering of water waves by a vertical wall with gaps.J. Austral. Math. Soc., Ser. B37
(1996) 512–529.

9. R. Porter and D. V. Evans, Complementary approximations to wave scattering by vertical barriers.J. Fluid
Mech.294 (1995) 155–180.

10. D. V. Evans and C. A. N. Morris, The effect of a fixed vertical barrier on obliquely incident surface waves in
deep water.J. Inst. Maths. Applics. 9 (1972), 198–204.

11. B. N. Mandal and Pulak Das, Oblique diffraction of surface waves by a submerged vertical plate.J. Engng.
Math.30 (1996) 459–470.

12. Pulak Das, Sudeshna Banerjea and B. N. Mandal, Scattering of oblique waves by a thin vertical wall with a
submerged gap.Arch. Mech.48 (1996) 959–972.

13. I. J. Losada, M. A. Losada and A. J. Roldán, Propagation of oblique incident waves past rigid vertical thin
barriers.Appl. Ocean Res.14 (1992) 191–199.

14. B. N. Mandal and D. P. Dolai, Oblique water wave diffraction by thin vertical barriers in water of uniform
finite depth.Appl. Ocean Res.16 (1994) 195–203.

15. D. V. Evans and C. A. N. Morris, Complementary approximations of the solution of a problem in water
waves.J. Inst. Maths. Applics. 10 (1972) 1–9.

16. Mridula Kanoria and B. N. Mandal, Oblique wave diffraction by two parallel vertical barriers with
submerged gaps in water of uniform finite depth.J. Tech. Phys.37 (1996) 187–204.

17. Sudeshna Banerjea, Mridula Kanoria, D. P. Doali and B. N. Mandal, Oblique wave scattering by a submerged
thin wall with gap in finite depth water.Applied Ocean Research18 (1996) 319–327.

18. Pulak Das, D. P. Dolai and B. N. Mandal, Oblique water wave diffraction by two parallel thin barriers with
gaps.J. Wtry. Port Coast Ocean Engng.123 Aug (1997) 163–171.

19. E. O. Tuck, Transmission of water waves through small apertures.J. Fluid Mech.49 (1971) 481–491.
20. E. O. Tuck, Matching problems involving flow through small holes.Adv. Fluid Mech.15 (1975) 89–158.
21. B. A. Packham and W. E. Williams, A note on the transmission of water waves through small apertures.J.

Inst. Maths Applics. 10 (1972) 176–184.
22. B. N. Mandal, A note on the diffraction of water waves by a vertical wall with a narrow gap.Arch. Mech.39

(1987) 269–273.
23. T. H. Havelock, Forced surface waves on water.Phil. Mag.8 (1929) 569–576.
24. D. C. Guiney, B. J. Noye and E. O. Tuck, Transmission of water waves through small apertures.J. Fluid

Mech.55 (1972) 149–161.
25. D. Owen and B. S. Bhatt, Transmission of water waves through a small aperture in a vertical thick barrier.

Q. J. Mech. Appl. Math.38 (1985) 379–409.
26. P. L.-F. Liu and J. Wu, Transmission of oblique waves through submerged apertures.Appl. Ocean. Res.8

(1986) 144–150.
27. P. L.-F. Liu and J. Wu, Wave transmission through submerged apertures.J. Wtry. Port Coast and Ocean

Engng. ASCE113 (1987) 660–671.
28. C. C. Mei and J. L. Black, Scattering of surface waves by rectangular obstacles in waters of finite depth.J.

Fluid Mech.38 (1969) 499–511.
29. D. V. Evans and M. Fernyhough, Edge waves along periodic coastlines, Part 2.J. Fluid Mech.297 (1995)

307–325.
30. J. N. Newman, Propagation of water waves past long two-dimensional obstacles.J. Fluid Mech.23 (1965)

23–29.
31. P. A. Martin and R. A. Dalrymple, Scattering of long waves by cylindrical obstacles and gratings using

matched asymptotic expansions.J. Fluid Mech.188 (1988) 465–490.
32. P. McIver, Low-frequency asymptotics of hydrodynamic forces on fixed and floating structures. In M. Rah-

man (ed.),Ocean Wave Engineering. Southampton: Computational Mechanics Publications, U.K. (1994)
1–49.

33. N. Drimmer, Y. Agnon and M. Steassnie, A simplified analytical model for a floating breakwater in water of
finite depth.Appl. Ocean Res.14 (1992) 33–41.

194831.tex; 6/05/1999; 13:03; p.24


